• Title/Summary/Keyword: Elastic Field

Search Result 820, Processing Time 0.029 seconds

Seismic Properties Study of Gas Hydrate in Deep Sea using Numerical Modeling Technique (수치 모델링 기술을 이용한 심해 가스 하이드레이트의 탄성파 특성 연구)

  • Shin, Sung-Ryul;Yeo, Eun-Min;Kim, Chan-Su;Park, Keun-Pil;Lee, Ho-Young;Kim, Young-Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.2
    • /
    • pp.139-147
    • /
    • 2006
  • We had conducted a numerical modeling to investigate seismic properties of gas hydrate with field parameters acquired over the East sea in 1998. We used a 2-D staggered grid finite difference method to generate synthetic elastic seismograms for multi-channel seismic survey, OBC (Ocean Bottom Cable) survey and VCS (Vertical Cable Seismic) survey. The results of this study showed that the method using staggered grid yielded stable results and could be used to seismic imaging. We could find out the high amplitude anomaly and the phase reversal phenomenon of reflection wave at interface between the gas hydrate layer and free gas layer such a BSR (Bottom Simulating Reflector) which is the evidence for existence of gas hydrate in seismic reflection data. And we computed the reflection coefficients at the incident angles corresponding to offset distance with the synthetic seismograms. The reflection coefficients acquired from the numerical modeling were nearly consistent with the reflection coefficient computed by Shuey's equation.

Effect of Si Content on the Phase Formation Behavior and Surface Properties of the Cr-Si-Al-N Coatings (Cr-Si-Al-N 코팅의 상형성 및 표면 물성에 미치는 Si 함량의 영향)

  • Choi, Seon-A;Kim, Hyung-Sun;Kim, Seong-Won;Lee, Sungmin;Kim, Hyung-Tae;Oh, Yoon-Suk
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.580-586
    • /
    • 2016
  • Cr-Si-Al-N coating with different Si content were deposited by hybrid physical vapor deposition (PVD) method consisting of unbalanced magnetron (UBM) sputtering and arc ion plating (AIP). The deposition temperature was $300^{\circ}C$, and the gas ratio of $Ar/N_2$ were 9:1. The CrSi alloy and aluminum targets used for arc ion plating and sputtering process, respectively. Si content of the CrSi alloy targets were varied with 1 at%, 5 at%, and 10 at%. The phase analysis, composition and microstructural analysis performed using x-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM) including energy dispersive spectroscopy (EDS), respectively. All of the coatings grown with textured CrN phase (200) plane. The thickness of the Cr-Si-Al-N films were measured about $2{\mu}m$. The friction coefficient and removal rate of films were measured by a ball-on-disk test under 20N load. The friction coefficient of all samples were 0.6 ~ 0.8. Among all of the samples, the removal rate of CrSiAlN (10 at% Si) film shows the lowest values, $4.827{\times}10^{-12}mm^3/Nm$. As increasing of Si contents of the CrSiAlN coatings, the hardness and elastic modulus of CrSiAlN coatings were increased. The morphology and composition of wear track of the films was examined by scanning electron microscopy (SEM) and energy dispersive spectroscopy, respectively. The surface energy of the films were obtained by measuring of contact angle of water drop. Among all of the samples, the CrSiAlN (10 at% Si) films shows the highest value of the surface energy, 41 N/m.

Dynamic Behavior of Submerged Floating Tunnel by Underwater Explosion (수중폭발에 의한 해중터널의 동적거동)

  • Hong, Kwan-Young;Lee, Gye-Hee;Lee, Seong-Lo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.31 no.5
    • /
    • pp.215-226
    • /
    • 2018
  • In this paper, to estimate the dynamic behavior of a submerged floating tunnel(SFT) by underwater explosion(UE), the SFT is modeled and analyzed by the explicit structural analysis package LS-DYNA. The section of SFT near to explosion point is modeled to shell and solid elements using elasto-plasticity material model for concrete tubular section and steel lining. And the other parts of the SFT are modeled to elastic beam elements. Also, mooring lines are modeled as tension-only cable elements. Total mass of SFT is including an added mass by hydrodynamic effect. The buoyancy on the SFT is considered in its initial condition using a dynamic relaxation method. The accuracy and the feasibility of the analysis model aree verified by the results of series of free field analysis for UE. And buoyancy ratio(B/W) of SFT, the distance between SFT and an explosion point and the arrangement of mooring line aree considered as main parameters of the explosion analysis. As results of the explosion analysis, the dynamic responses such as the dent deformation by the shock pressure are responded less as more distance between SFT and an explosion point. However, the mooring angle of the diagonal mooring system can not affect the responses such as the horizontal displacement of SFT by the shock pressure.

Evaluation of Yield Load in Pile Load Tests on Driven Piles (관입말뚝에 대한 연직재하시험시 항복하중의 판정법)

  • 홍원표;심기석
    • Geotechnical Engineering
    • /
    • v.5 no.1
    • /
    • pp.7-18
    • /
    • 1989
  • In pile load tests on end bearing piles, generally, it is not possible to continue loading to the ultimate load. Thus, the concept of yield load has been introduced for determining design loads Iron the pile load test records. The conventional rules to determine the yield load were not available for evaluation on pile load test records obtained in 6 fields nearby westers 8r Southern Coasts in Korea. A new rule 9.as presented to determine easily the yield load, based on investigations on the pile load test records. The yield load of piles is determined at the infiection point on semi-logarithmic coordinates (P-logS), in which load is plotted in normal scale and settlement is plotted in logarithmic scale. This method may not only save much costs and times but also present safe luorking circumstances for pile load tests in field. It was found that the yield load represented the elastic limit of the pile load-settlement behalf.iota. The ultimate load, which is given at 25.4mm settlement on pile head, was 1.5 times of the yield load. The allowable long-term and short-term load capacities were, respectively, 50% and 75% of the yield load. The safety factors to get the allowable pile capacity were obtained as 2.0~4.0 for the equations to predict the static pile capacity.

  • PDF

The study of a practical modeling method for the analysis of dynamic behavior by the mockup test of prestressed concrete girder (PSC I형 거더 실물 모형체 실험을 통한 동적거동특성 분석의 실용적 모델링 기법 연구)

  • Kim, Hyung-Kyu;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.148-156
    • /
    • 2018
  • The integrity assessment of the bridge behavior is generalized by field data of a static load-deformation curve and dynamic properties such as impact factors and natural frequencies. Evaluating it with numerical analysis is a reasonable method. The results of the mockup test and the numerical analysis are corresponded with each other since the behavior of service load proceeds in elastic region. In case of the dynamic behavior of structure, especially for the analysis of vibration, the result of the mockup test differs from the result of numerical analysis a little due to the geometric shape and non-homogeneous materials. In order to converge on these tolerances, this study suggested several numerical models, analyzed the sensitivity and finally offered a practical modeling method for the estimation of bridge on the basis of the result of mockup test. Based on the model substituted concrete section for strands section, the natural frequency of the model composed with axial stiffness of strands or the model applied the modified modulus of elasticity was closest with the result of the mockup test.

Fracture and Hygrothermal Effects in Composite Materials (복합재의 파괴와 hygrothermal 효과에 관한 연구)

  • Kook-Chan Ahn;Nam-Kyung Kim
    • Journal of the Korean Society of Safety
    • /
    • v.11 no.4
    • /
    • pp.143-150
    • /
    • 1996
  • This is an explicit-Implicit, finite element analysis for linear as well as nonlinear hygrothermal stress problems. Additional features, such as moisture diffusion equation, crack element and virtual crack extension(VCE ) method for evaluating J-integral are implemented in this program. The Linear Elastic Fracture Mechanics(LEFM) Theory is employed to estimate the crack driving force under the transient condition for and existing crack. Pores in materials are assumed to be saturated with moisture in the liquid form at the room temperature, which may vaporize as the temperature increases. The vaporization effects on the crack driving force are also studied. The Ideal gas equation is employed to estimate the thermodynamic pressure due to vaporization at each time step after solving basic nodal values. A set of field equations governing the time dependent response of porous media are derived from balance laws based on the mixture theory Darcy's law Is assumed for the fluid flow through the porous media. Perzyna's viscoplastic model incorporating the Von-Mises yield criterion are implemented. The Green-Naghdi stress rate is used for the invariant of stress tensor under superposed rigid body motion. Isotropic elements are used for the spatial discretization and an iterative scheme based on the full newton-Raphson method is used for solving the nonlinear governing equations.

  • PDF

Performance of Constructed Facilities: Pavement Structural Evaluation of William P Hobby Airport in Houston, Texas

  • Kim, Sung-Hee;Jeong, Jin-Hoon;Kim, Nak-Seok
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.1
    • /
    • pp.21-25
    • /
    • 2009
  • The results of a recent case study for material characterizations and structural evaluation to design asphalt overlay thickness of William P Hobby airport in Houston, Texas are presented herein. The existing runway 12R-30L of Hobby airport consisted of thick asphalt overlay over Portland Cement Concrete (PCC) and the localized surface shoving as evident in the closure of surface groove has been observed recently. Using the field cored asphalt concrete mixtures, measurements of percent air voids, asphalt content and aggregate gradation were conducted to find out the causations of surface shoving and groove closure. The FAA layered elastic program, LEDFAA was utilized to evaluate pavement structural conditions for new asphalt overlay. Two different composition assumptions for existing pavement were made to evaluate the pavement as followings: 1) APC, Asphalt Concrete Overlay over PCC pavement and 2) AC, Asphalt Concrete pavement. Based on laboratory testing results, a ratio of percent passing #200 to asphalt content ranged 1.1 to 2.2, which is considered a high ratio and a tendency of tender mix design was observed. Thus, the localized surface shoving and groove closure of the runway 12R-30L could be attributed to the use of excessive fine contents and tender mix design. Based on the structural evaluation results, it was ascertained that the analysis assuming the pavement structure as AC pavement gives more realistic structural life when the asphalt overlay is thicker enough compared to PCC layer because the existing PCC pavement under asphalt overlay acts more like a high quality base material.

Low-Voltage EM(Elasto-Magnetic) Sensing Technique for Tensile Force Management of PSC(Prestressed Concrete) Internal Tendon (PSC 내부 텐던의 긴장력 관리를 위한 저전압 EM 센싱 기법)

  • Park, Jihwan;Kim, Junkyeong;Eum, Ki-Young;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.2
    • /
    • pp.87-92
    • /
    • 2019
  • In this paper, we have verified a low-voltage EM(elasto-magnetic) sensing technique for tensile force management of PSC(prestressed concrete) internal tendon in order to apply the technique to actual construction sites where stable power supply is difficult. From observation of past domestic and overseas PSC structural accident cases, it was found that PS tension is very important to maintain structural stability. In this paper, we have tried to measure the tensile force from a magnetic hysteresis curve through EM sensors according to voltage value by using relation between magnetostriction and stress of ferromagnetic material based on elastic-magnetic theory. For this purpose, EM sensor of double cylindrical coil type was fabricated and tensile force test equipment for PS tendon using hydraulic tensioning device was constructed. The experiment was conducted to confirm relationship between changes of permeability and tensile force from the measurement results of the maximum / minimum voltage amount. The change of magnetic hysteresis curve with magnitude of tensile force was also measured by reducing amount of voltage step by step. As a result, the slope of estimation equation in accordance with magnitude of magnetic field decreases with the voltage reduction. But it was confirmed a similar pattern of change of magnetic permeability for the magnetic hysteresis loop. So, in this study, it is considered that it is possible to manage the tensions of PSC internal tendon using EM sensing technique in low-voltage state.

Geotechnical Engineering Characteristics of Ulleung Basin Sediment, East Sea (동해, 울릉 분지 심해토의 지반공학특성)

  • Lee, Chang-Ho;Yun, Tae-Sup;J.C., Santamarina;Bahk, Jang-Jun;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.6
    • /
    • pp.17-29
    • /
    • 2009
  • There has been an increase in the investigation of deep sea sediments with a consequent increase in the amount of energy required to undertake these investigations. The geotechnical characteristics of Ulleung Basin sediment are explored by using depressurized specimens following methane production tests carried out on pressured core samples obtained at 2,100 m water depth and 110 m below sea floor. Geotechnical index tests, X-ray diffraction, and scanning electron microscope are conducted to identify the geotechnical index parameters, clay mineralogy, chemical composition, and microstructure of the sediments. Compressibility, and elastic and electromagnetic wave parameters are investigated for two samples by using a multi sensing instrumented oedometer cell. The strength chatracteristics are obtained by the direct shear tests. The dominant clay minerals are mostly kaolinite, illite, chlorite, and calcite. The SEM shows a well-developed flocculated structure of the microfossil. Void ratio, electrical resistivity, real permittivity, conductivity, and shear wave velocity show bi-linear behavior with the effective vertical stress: as the vertical effective stress increases. The friction angle obtained by the direct shear test is about $21^{\circ}$, which is similar to the value observed in the Ulleung Basin sediments. This study shows that the understanding of the behavior acting on the diatomaceous marine sediment is important because it often maintains the useful energy resources such as gas hydrate and so will be the new engineering field in the next generation.

An Analysis of the Settlement Behavior of Soft Clayey Ground Considering the Effect of Creep during the Primary Consolidation (1차압밀과정중의 크리프의 영향을 고려한 연약 점성토지반의 침하거동 해석)

  • Baek, Won-Jin;Matsuda, Hiroshi;Choi, Woo-Jung;Kim, Chan-Kee;Song, Byung-Gwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.107-115
    • /
    • 2008
  • This paper is performed to examine the effect of creep during the primary consolidation and the applicability of the Yin's EVP (Elasto-Visco-Plastic) model. In ordinary consolidation theories using the elastic model, the primary consolidation process can be expressed but the secondary consolidation process cannot. It is due to the viscosity, which can express the secondary consolidation, and is sometimes related to the scale effect (difference of the thickness of clay layer between laboratory sample and field condition) such as hypotheses Type A and Type B shown by Ladd et al. (1977). Usually, the existence of the creep during the primary consolidation has been conformed and the Type B is well acceped. On the other hand, from the large-scaled consolidation tests the intermediate characteristic between Type A and Type B was proposed as Type C by Aboshi (1973). In this study, to clarify the effect of creep on the settlement-time relation during the primary consolidation in detail, Type B consolidation tests were performed using the separate-type consolidation test apparatus for a peat and clay. Then the test results were analyzed by using Yin's EVP Model (Yin and Graham, 1994). In conclusion, followings were obtained. At the end of primary consolidation, the compression for the subspecimens should not be the same because of the difference of the excess pore water pressure dissipation rate. And the average settlement measured by the separate-type consolidometer coincides with the analyzed one using the Yin's EVP model. As for the dissipation of the excess pore water pressure, however, the measured excess pore water pressure dissipates faster compared with the Yin's model.