• 제목/요약/키워드: Elastic Factor

검색결과 825건 처리시간 0.032초

고정 지점을 갖는 X-브레이싱의 탄성 면외 좌굴 (Out-of-Plane Elastic Buckling of X-Bracing System with Fixed Ends)

  • 문지호;윤기용;이학은
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2007년도 정기총회 및 학술발표대회
    • /
    • pp.293-296
    • /
    • 2007
  • This study investigated the out-of-plane elastic buckling load and effective length factor of X-bracing system. The members of X-bracing system which are studied in this paper are rigidly attached to the structure at their end connections, and are pinned or rigidly connected at their point of intersection. The effective length factors are derived for the general case where the tension and compression brace have different material and geometrical properties.

  • PDF

분기관 용접부의 크리프 특성 불균일이 응력 재분배에 미치는 영향 (Effect of Creep Mismatch Factor on Stress Redistribution in Welded Branch)

  • 이국희;김윤재;윤기봉
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.293-298
    • /
    • 2008
  • This paper attempts to quantify the effect of mismatch in creep properties on steady-state stress distributions for a welded branch vessel. A particular geometry for the branch vessel is chosen. The vessel is modeled by only two materials, the base and weld metal. Idealized power law creep laws with the same creep exponents are assumed for base and weld metals. A mismatch factor is introduced, as a function of the creep constant and exponent. Steady-state stress distributions within the weld metal, resulting from threedimensional, elastic-creep finite element (FE) analyses, are then characterized by the mismatch factor. We can find that average stresses in the weld can be characterized by the mis-match factor. And there is an analogy between elastic-creep and elastic-perfectly plastic.

  • PDF

Average Flow Model을 이용한 Kurtosis의 변화에 따른 Flow Factors에 관한 연구 (Effects of Kurtosis on the Flow Factors using Average Flow Model)

  • 강민호;구영필;조용주
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2000년도 제32회 추계학술대회 정기총회
    • /
    • pp.280-288
    • /
    • 2000
  • In this study, flow factors are evaluated in terms of kurtosis using random rough surface generated numerically. As h/$\sigma$become large øx, øy, øfp approach to 1 and øs, øfs to 0 asymptotically regardless of kurtosis. øx, øy, øfp increase with increasing kurtosis in the mixed lubrication regime. øs, øfs is associated with an additional flow transport due to the combined effect of sliding and roughness. As h/$\sigma$ decreases øs, øfs increase up to a certain point, and then decrease toward zero. This behavior can be attributed to the increasing number of contacts in the mixed lubrication regime. øx in the presence of elastic deformation on the surface is larger than øx in the absence of it because local film thickness( h$\_$T/) increases by elastic deformation.

  • PDF

ON CRACK INTERACTION EFFECTS OF IN-PLANE SURFACE CRACKS USING ELASTIC AND ELASTIC-PLASTIC FINITE ELEMENT ANALYSES

  • Kim, Jong-Min;Huh, Nam-Su
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.680-689
    • /
    • 2010
  • The crack-tip stress fields and fracture mechanics assessment parameters for a surface crack, such as the elastic stress intensity factor or the elastic-plastic J-integral, can be affected significantly by the adjacent cracks. Such a crack interaction effect due to multiple cracks can alter the fracture mechanics assessment parameters significantly. There are many factors to be considered, for instance the relative distance between adjacent cracks, the crack shape, and the loading condition, to quantify the crack interaction effect on the fracture mechanics assessment parameters. Thus, the current assessment codes on crack interaction effects (crack combination rules), including ASME Sec. XI, BS7910, British Energy R6 and API 579-1/ASME FFS-1, provide different rules for combining multiple surface cracks into a single surface crack. The present paper investigates crack interaction effects by evaluating the elastic stress intensity factor and the elastic-plastic J-integral of adjacent in-plane surface cracks in a plate through detailed 3-dimensional elastic and elastic-plastic finite element analyses. The effects on the fracture mechanics assessment parameters of the geometric parameters, the relative distance between two cracks, and the crack shape are investigated systematically. As for the loading condition, an axial tension is considered. Based on the finite element results, the acceptability of the crack combination rules provided in the existing guidance was investigated, and the relevant recommendations on a crack interaction for in-plane surface cracks are discussed. The present results can be used to develop more concrete guidance on crack interaction effects for crack shape characterization to evaluate the integrity of defective components.

탄성추종계수를 이용한 고온 배관계의 크리프 응력 예측 (Prediction of Creep Stress in High Temperature Piping System Using Elastic Follow-up Factor)

  • 서준민;윤교근;이현재;오영진;김윤재
    • 한국압력기기공학회 논문집
    • /
    • 제14권1호
    • /
    • pp.32-37
    • /
    • 2018
  • When designing high temperature piping system, creep phenomena must be considered. Since ASME code does not provide detailed methods of design by rule (DBR) for high temperature piping, Finite element analysis should be performed. However, In the case of piping system with frequent design changes, creep analysis of the entire piping system for every change is ineffective and practically impossible. Therefore, based on elastic and elastic-plastic analysis, which takes a relatively short time, the creep stress is predicted by using elastic follow-up factor method provided in R5 code and plastic-creep analogy presented by Hoff. The predicted creep stress for a virtual piping system was compared with the creep analysis result and the two results showed similar stress relaxation tendency in time.

A frictionless contact problem for two elastic layers supported by a Winkler foundation

  • Birinci, Ahmet;Erdol, Ragip
    • Structural Engineering and Mechanics
    • /
    • 제15권3호
    • /
    • pp.331-344
    • /
    • 2003
  • The plane contact problem for two infinite elastic layers whose elastic constants and heights are different is considered. The layers lying on a Winkler foundation are acted upon by symmetrical distributed loads whose lengths are 2a applied to the upper layer and uniform vertical body forces due to the effect of gravity in the layers. It is assumed that the contact between two elastic layers is frictionless and that only compressive normal tractions can be transmitted through the interface. The contact along the interface will be continuous if the value of the load factor, ${\lambda}$, is less than a critical value. However, interface separation takes place if it exceeds this critical value. First, the problem of continuous contact is solved and the value of the critical load factor, ${\lambda}_{cr}$, is determined. Then, the discontinuous contact problem is formulated in terms of a singular integral equation. Numerical solutions for contact stress distribution, the size of the separation areas, critical load factor and separation distance, and vertical displacement in the separation zone are given for various dimensionless quantities and distributed loads.

Proposal of the Penalty Factor Equations Considering Weld Strength Over-Match

  • Kim, Jong-Sung;Jeong, Jae-Wook;Lee, Kang-Yong
    • Nuclear Engineering and Technology
    • /
    • 제49권4호
    • /
    • pp.838-849
    • /
    • 2017
  • This paper proposes penalty factor equations that take into consideration the weld strength over-match given in the classified form similar to the revised equations presented in the Code Case N-779 via cyclic elastic-plastic finite element analysis. It was found that the $K_e$ analysis data reflecting elastic follow-up can be consolidated by normalizing the primary-plus-secondary stress intensity ranges excluding the nonlinear thermal stress intensity component, $S_n$ to over-match degree of yield strength, $M_F$. For the effect of over-match on $K_n{\times}K_{\nu}$, dispersion of the $K_n{\times}K_{\nu}$ analysis data can be sharply reduced by dividing total stress intensity range, excluding local thermal stresses, $S_{p-lt}$ by $M_F$. Finally, the proposed equations were applied to the weld between the safe end and the piping of a pressurizer surge nozzle in pressurized water reactors in order to calculate a cumulative usage factor. The cumulative usage factor was then compared with those derived by the previous $K_e$ factor equations. The result shows that application of the proposed equations can significantly reduce conservatism of fatigue assessment using the previous $K_e$ factor equations.

Improved Thermal, Structural and Electrical Properties of Elastic-Epoxy Blends System

  • Lee, Kyoung-Yong;Lee, Kwan-Woo;Choi, Yong-Sung;Park, Dae-Hee
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제4C권5호
    • /
    • pp.230-235
    • /
    • 2004
  • In this paper, epoxy elasticity factors were investigated by TMA (Thermomechanical Analysis), DMTA (Dynamic Mechanical Thermal Analysis) and FESEM (Field Emission Scanning Electron Microscope) to improve toughness and reduce brittleness of existing epoxy resin. Dumbbell shaped specimens were made and tested at rates of 0, 20 and 35phr (part per hundred resins). TMA temperatures ranged from -2$0^{\circ}C$ to 20$0^{\circ}C$. Tg (glass transition temperature) of elastic epoxy was measured by thermal analysis. Also investigated were thermal expansion coefficient ($\alpha$), modulus and Tan$\delta$ (loss factor). And we analyzed structure through FESEM, could find elastic-factors of elastic epoxy that is not existing-epoxy. In addition, we measured permittivity and Tan$\delta$ for investigation of the electrical properties of elastic epoxy. Permittivity and Tan$\delta$ depend on elastomer composition. Namely, permittivity and Tan$\delta$ increase according to the elastomer contents. For experimental analysis results, 20phr was considered an excellent specimen.

탄성계의 진동제어 (Vibration control of elastic systems)

  • 박영필;이상조
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1986년도 한국자동제어학술회의논문집; 한국과학기술대학, 충남; 17-18 Oct. 1986
    • /
    • pp.113-118
    • /
    • 1986
  • The feedback controllers for the active vibration control of elastic systems are developed using optimal regulator, optimal tracking, time optimal and noise observer algorithms. Using the modal analysis of the elastic systems, the effects of the actuator positions, the input weighting factor and the magnitude of the constraint of the actuator force are investigated.

  • PDF

2차원 선형 탄성 이방성 재료에서 $J_k$-적분을 이용한 응력확대계수 계산 (Calculation of Stress Intensity Factor in 2-D Using $J_k$-Integral for a Rectilinear Elastic Anisotropic Body)

  • 안득만;최창연
    • 한국정밀공학회지
    • /
    • 제18권7호
    • /
    • pp.134-142
    • /
    • 2001
  • The integrals $J_k$(k=1,2) in the rectilinear anisotropis body in 2-D were determined using Lekhnitskii formalism. The relationship between $J_k$ and stress intensity factors are implified by the important equation between elastic compliance. The numerical evaluation of stress intensity factor for the single edge crack in mixed mode is determined by superposing known exact solutions.

  • PDF