• Title/Summary/Keyword: Elastic Deformation Limit

Search Result 63, Processing Time 0.031 seconds

Adaptive mesh refinement for 3-D hexahedral element mesh by iterative inserting zero-thickness element layers (무두께 요소층을 이용한 육면체 격자의 반복적 적응 격자 세분)

  • Park C. H.;Yang D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.79-82
    • /
    • 2004
  • In this study, a new refinement technique for 3-dimensional hexahedral element mesh is proposed, which is aimed at the control of mesh density. With the proposed scheme the mesh is refined adaptively to the elemental error which is estimated by 'a posteriori' error estimator based on the energy norm. A desired accuracy of an analysis i.e. a limit of error defines the new desired mesh density map on the current mesh. To obtain the desired mesh density, the refinement procedure is repeated iteratively until no more elements to be refined exist. In the algorithm, at first the regions of mesh to be refined are defined and, then, the zero-thickness element layers are inserted into the interfaces between the regions. All the meshes in the regions, in which the zero-thickness layers are inserted, are to be regularized in order to improve the shape of the slender elements on the interfaces. This algorithm is tested on a simple shape of 2-d quadrilateral element mesh and 3-d hexahedral element mesh. A numerical example of elastic deformation of a plate with a hole shows the effectiveness of the proposed refinement scheme.

  • PDF

Statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load

  • Li, Gang
    • Steel and Composite Structures
    • /
    • v.3 no.3
    • /
    • pp.185-198
    • /
    • 2003
  • The concept of performance based seismic design has been gradually accepted by the earthquake engineering profession recently, in which the cost-effectiveness criterion is one of the most important principles and more attention is paid to the structural performance at the inelastic stage. Since there are many uncertainties in seismic design, reliability analysis is a major task in performance based seismic design. However, structural reliability analysis may be very costly and time consuming because the limit state function is usually a highly nonlinear implicit function with respect to the basic design variables, especially for the complex large-scale structures for dynamic and nonlinear analysis. Understanding statistical properties of the structural inelastic deformation, which is the aim of the present paper, is helpful to develop an efficient approximate approach of reliability analysis. The present paper studies the statistical properties of the maximum elastoplastic story drift of steel frames subjected to earthquake load. The randomness of earthquake load, dead load, live load, steel elastic modulus, yield strength and structural member dimensions are considered. Possible probability distributions for the maximum story are evaluated using K-S test. The results show that the choice of the probability distribution for the maximum elastoplastic story drift of steel frames is related to the mean value of the maximum elastoplastic story drift. When the mean drift is small (less than 0.3%), an extreme value type I distribution is the best choice. However, for large drifts (more than 0.35%), an extreme value type II distribution is best.

The Parameter Study of Serviceability Review of End Track on Railway Bridge installed Concrete Slab Track (콘크리트궤도 부설 교량의 단부 사용성 검토를 위한 매개변수 연구)

  • Sung, Deok-Yong;Kim, Young-Ha;Park, Yong-Gul;Kim, Sung-Il
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.117-124
    • /
    • 2008
  • Construction of concrete slab track is trending to increase gradually in national and international for reduction in track maintenance cost and secure of ride comfort. However, in case of railway bridge installed concrete slab track, the serviceability review of end deck should be performed for reducing the maintenance cost of track. The serviceability review of track contains that the compression force which is occurred on fastener of end bridge should be smaller than the compression force causing the deformation limit of elastic pad and the uplift force which is occurred on fastener of end abutment should be smaller than initial fastening force. Therefore, this study calculated the deflection and end rotation of the railway bridge according to the span length and stiffness of railway bridge and estimated the compression force and uplift force which are occurred on the track of end bridge using the finite element method. This study indicated the several diagrams that are contained the correlation between the behaviour of the track and the behaviour of the railway bridge. As a result, to reduce the end rotation of the railway bridge is very efficient to increase the height of railway deck.

  • PDF

The Buckling Behavior of High-strength Steel Truss Columns with Box Section (박스단면 고강도 트러스 기둥재의 좌굴거동)

  • Jang, Gab-Chul;Chang, Kyong-Ho
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.3 s.25
    • /
    • pp.79-86
    • /
    • 2007
  • Recently, as steel structures become higher and more long-spanned, construction of high-strength steels is increasing gradually. Application of high-strength steel can be possible to make a more light and economic steel structures by reducing thickness and space. To apply a high-strength steel to structure, criteria of high-strength steel for buckling is required. However, current specification is not sufficient for criteria of high-strength steels. In this paper, buckling behavior of high-strength steel truss columns with box sections is investigated by using three-dimensional elastic-plastic finite deformation analysis program. The criteria equation for allowable compressive stress of high-strength steel truss columns with box sections is proposed and confirmed the applicability. It is reasonable form analytical results that formulated equations after finding the upper limit of allowable axial direction compression stresses of high-strength steel truss columns. And new equation is suitable to buckling design of high-strength steel truss columns.

  • PDF

Energy dissipation system for earthquake protection of cable-stayed bridge towers

  • Abdel Raheem, Shehata E.;Hayashikawa, Toshiro
    • Earthquakes and Structures
    • /
    • v.5 no.6
    • /
    • pp.657-678
    • /
    • 2013
  • For economical earthquake resistant design of cable-stayed bridge tower, the use of energy dissipation systems for the earthquake protection of steel structures represents an alternative seismic design method where the tower structure could be constructed to dissipate a large amount of earthquake input energy through inelastic deformations in certain positions, which could be easily retrofitted after damage. The design of energy dissipation systems for bridges could be achieved as the result of two conflicting requirements: no damage under serviceability limit state load condition and maximum dissipation under ultimate limit state load condition. A new concept for cable-stayed bridge tower seismic design that incorporates sacrificial link scheme of low yield point steel horizontal beam is introduced to enable the tower frame structure to remain elastic under large seismic excitation. A nonlinear dynamic analysis for the tower model with the proposed energy dissipation systems is carried out and compared to the response obtained for the tower with its original configuration. The improvement in seismic performance of the tower with supplemental passive energy dissipation system has been measured in terms of the reduction achieved in different response quantities. Obtained results show that the proposed energy dissipation system of low yield point steel seismic link could strongly enhance the seismic performance of the tower structure where the tower and the overall bridge demands are significantly reduced. Low yield point steel seismic link effectively reduces the damage of main structural members under earthquake loading as seismic link yield level decreases due their exceptional behavior as well as its ability to undergo early plastic deformations achieving the concentration of inelastic deformation at tower horizontal beam.

A STUDY ON THE CONNECTION MODALITY BETWEEN IMPLANT AND TOOTH IN OSSEOINTEGRATED PROSTHETIC TREATMENT USING FINITE ELEMENT ANALYSIS (골유착성 임플랜트 보철치료시 자연지대치와의 연결형태에 관한 유한요소적 응력분석 연구)

  • Kim Yong-Ho;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.1-32
    • /
    • 1991
  • Tho osseointegrated dental prosthetic treatment has develped for the edentulous patient with severely resorbed alveolar ridge, and has given us a successful clinical results to date. Nowadays the partially edentulism is included among the indications of the osseointegrated prosthetic treatment. The purpose of this study was to analyze the stress distribution at supporting bone according to the types of connection modality between implant and tooth in the superstructure. Two dimensional finite element stress analysis was applied for this study. FEM models were created using software Super SAP for MBM 16bit personal computer. Three modalities of connection were modeled and analyzed under load condition. The results were as follws: 1. The stress develped at tooth and implant in the cancellous bone was lower in the case of rigid connection than in the case of norigid connection, but higher between the two implants in the case of rigid connection than in the case of nonrigid connection. 2. The stress developed at the cortical bone and at the supporting bone interface was lower in the case of rigid connection than in the case of nonrigid connection 3. The stress developed at the supporting tissue interface of the implant nearby the tooth, was lower in the case of rigid connection than in the case of nonrigid connection. 4. The stress developed at the supporting tissue interface of posteriormost implant, was same between the cases of rigid and nonrigid connection. 5. The stress distribution related to the freestanding case was generally similar to the stress distribution pattern of nonrigid connection case. 6. The magnitude of applied load which produces deformation within elastic limit, had influence on the absolute value of stress, but had no influence on the pattern of stress distribution of the same case.

  • PDF

A Dry Friction Model to Realize Stick for Simulation of the System with Friction and Accuracy Verification of the Friction Model (마찰력이 작용하는 동적 시스템의 점착 구현을 위한 마찰모델 제안 및 정확성 검증)

  • Choi, Chan-Kyu;Yoo, Hong-Hee
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.8
    • /
    • pp.748-755
    • /
    • 2012
  • Friction causes self-excited vibration, stick-slip vibration and any other friction-induced phenomena. That kinds of vibrations cause chatter and squeal. In order to predict such vibrations accurately, employing an accurate friction model is very important because a dynamic behavior of a system with friction is dominantly governed by a friction model. A Coulomb friction model is the most widely known model. Coulomb friction model is useful model to obtain analytical solutions of the system with friction and the model gives relatively good simulation result. However, defining a friction force at a stick state in simulation is hard because of the characteristic itself and a Coulomb friction model is discontinuous function between a static and a dynamic friction coefficient. Therefore, applying the Coulomb friction model to a simulation is not appropriate. In order to resolve these problems, an approximated Coulomb friction model was developed using simple and continuous function. However, an approximated Coulomb friction model cannot realize stick. Therefore, an approximated Coulomb friction model cannot describe friction phenomena accurately. In order to analyze a friction phenomenon accurately, a friction model for a simulation was proposed in this paper. A proposed friction model realizes stick and gives reasonably good results compared to results obtained by the simulation employing an approximated Coulomb friction model. Accuracy of a proposed friction model was verified by comparing experimental results.

Seismic response estimation of steel buildings with deep columns and PMRF

  • Reyes-Salazar, Alfredo;Soto-Lopez, Manuel E.;Gaxiola-Camacho, Jose R.;Bojorquez, Eden;Lopez-Barraza, Arturo
    • Steel and Composite Structures
    • /
    • v.17 no.4
    • /
    • pp.471-495
    • /
    • 2014
  • The responses of steel buildings with perimeter moment resisting frames (PMRF) with medium size columns (W14) are estimated and compared with those of buildings with deep columns (W27), which are selected according to two criteria: equivalent resistance and equivalent weight. It is shown that buildings with W27 columns have no problems of lateral torsional, local or shear buckling in panel zone. Whether the response is larger for W14 or W27 columns, depends on the level of deformation, the response parameter and the structural modeling under consideration. Modeling buildings as two-dimensional structures result in an overestimation of the response. For multiple response parameters, the W14 columns produce larger responses for elastic behavior. The axial load on columns may be significantly larger for the buildings with W14 columns. The interstory displacements are always larger for W14 columns, particularly for equivalent weight and plane models, implying that using deep columns helps to reduce interstory displacements. This is particularly important for tall buildings where the design is usually controlled by the drift limit state. The interstory shears in interior gravity frames (GF) are significantly reduced when deep columns are used. This helps to counteract the no conservative effect that results in design practice, when lateral seismic loads are not considered in GF of steel buildings with PMRF. Thus, the behavior of steel buildings with deep columns, in general, may be superior to that of buildings with medium columns, using less weight and representing, therefore, a lower cost.

A Rheological Study on Creep Behavior of Clays (점토(粘土)의 Creep 거동(擧動)에 관한 유변학적(流變學的) 연구(研究))

  • Lee, Chong Kue;Chung, In Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.1 no.1
    • /
    • pp.53-68
    • /
    • 1981
  • Most clays under sustained load exhibit time-dependent deformation because of creep movement of soil particles and many investigators have attempted to relate their findings to the creep behavior of natural ground and to the long-term stability of slopes. Since the creep behavior of clays may assume a variety of forms depending on such factors as soil plasticity, activity and water content, it is difficult and complicated to analyse the creep behavior of clays. Rheological models composed of linear springs in combination with linear or nonlinear dashpots and sliders, are generally used for the mathematical description of the time-dependent behavior of soils. Most rheological models, however, have been proposed to simulate the behavior of secondary compression for saturated clays and few definitive data exist that can evaluate the behavior of non-saturated clays under the action of sustained stress. The clays change gradually from a solid state through plastic state to a liquid state with increasing water content, therefore, the rheological models also change. On the other hand, creep is time-dependent, and also the effect of thixotropy is time-function. Consequently, there may be certain correlations between creep behavior and the effects of thixotropy in compacted clays. In addition, the states of clay depend on water content and hence the height of the specimen under drained conditions. Futhermore, based on present and past studies, because immediate elastic deformation occurs instantly after the pressure increment without time-delayed behavior, the factor representing immediate elastic deformations in the rheological model is necessary. The investigation described in this paper, based on rheological model, is designed to identify the immediate elastic deformations and the effects of thixotropy and height of clay specimens with varing water content and stress level on creep deformations. For these purposes, the uniaxial drain-type creep tests were performed. Test results and data for three compacted clays have shown that a linear top spring is needed to account for immediate elastic deformations in the rheological model, and at lower water content below the visco-plastic limit, the effects of thixotropy and height of clay specimens can be represented by the proposed rheological model not considering the effects. Therefore, the rheological model does not necessitate the other factors representing these effects. On the other hand, at water content higher than the visco-plastic limit, although the state behavior of clays is visco-plastic or viscous flow at the beginning of the test, the state behavior, in the case of the lower height sample, does not represent the same behavior during the process of the test, because of rapid drainage. In these cases, the rheological model does not coincide with the model in the case of the higher specimens.

  • PDF

Experimental study on the longitudinal load transfer of a shallow tunnel depending on the deformation tunnel face (I) (얕은 터널의 굴진면 변형에 따른 종방향 하중전이 특성에 대한 실험적 연구(I))

  • Kim, Yang Woon;Lee, Sang Duk
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.487-497
    • /
    • 2016
  • If a tunnel is excavated, the released stress is redistributed in the ground around the tunnel face, which lead the stress state of the surrounding ground of the tunnel and the load acting on the tunnel support to change. If the tunnel face deforms, the ground ahead of it is relaxed, and the earth pressure acting on it decreases. And if the displacement increases so much that, the ground ahead of the tunnel face reaches in failure state. At this time, load would be transferred longitudinally in the tunnel, depending on the cover and the face deformations. The longitudinal load transfers in the tunnels induced by the tunnelling has been often studied; however, the relation between the deformation of the tunnel face and the longitudinal load transfer was rarely studied. Therefore in this study assesses the characteristics of the longitudinal load transfer as the face was failed by displacement by conducting a model test in a shallow tunnel. In other words, the longitudinal load transfer of the tunnel with the progress of the face deform was measured by conducting a model test, beginning at the state of earth pressure at rest. As results of this study, most of the longitudinal load transfers occurred drastically at the beginning of the displacement of the tunnel face, and as the displacement of the face approached the ultimate displacement, it converged to the ultimate displacement at a gentler slope. In other words, when the ground ahead of the tunnel face was still in an elastic state, the longitudinally transferred load increased sharply at the beginning stage but it tended to increase gradually if it approached to the ultimate limit. Thus, it was noted that the earth pressure in the face and the longitudinal load transfer of the tunnel had the same decreasing tendency.