• Title/Summary/Keyword: Elastic Blood Vessels

Search Result 16, Processing Time 0.021 seconds

FSI simulation of pulsatile flow in the blood vessel (혈관내 맥동유동의 FSI 모사)

  • Kim, Yun-Gi;Kim, Kyung-Chun
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1484-1486
    • /
    • 2008
  • Characteristics of pulsatile flow in 3-dimensional elastic vessel wall should be investigated in order to understand the physiological blood flow in human body. In this study, the modelling of the physiological blood flow in the elastic blood vessel is proposed. Variation of the pressure and the velocity wavefroms are obtained using the FSI method

  • PDF

Analysis of Pulsating Flow in Elastic Parallel Plates and an Elastic Pipe Model Using Moving Boundary Algorithm (이동경계 수치해법을 이용한 탄성평판 및 탄성관 모델내의 맥동유동 해석)

  • Park Hyung Gyu;Kim Charn-Jung;Lee Chong-Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.425-434
    • /
    • 2005
  • In order to analyze pulsating flows in elastic blood vessels, a method based on the ALE concept and finite volume method was reformed and modulated to include wall motion of elastic vessels and impedance phase angle(phase difference between wall motion and blood flow). Our study indicated wall shear rates(WSR) were significantly influenced by the wall motion and the impedance phase angle. For larger wall motion more than $5{\%},$ the computed WSR started to deviate from the results of the perturbation theory that assumed smaller wall motion. The study showed that oscillatory shear index increased as the impedance phase angle became more negative like $-70{\circ}\;or\;-80{\circ}$ due to reduced mean WSR and increased amplitude of WSR. This result indicated that hypertensive patients are more vulnerable to atherosclerosis than normal persons because of the role of more negative impedance phase angles usually observed in these patients.

Modeling of Hemodynamics in Stenosed Artery (협착 동맥혈관의 혈류유동 모델링)

  • Kim, Seong-Jong;Park, Young-Ran;Kim, Shagn-Jin;Kang, Hyung-Sub;Kim, Jin-Shang;Oh, Sung-Hoon;Kang, Sung-Jun;Kim, Gi-Beum
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.5
    • /
    • pp.2285-2290
    • /
    • 2012
  • This study is about atherosclerosis which occupies the highest rate in many diseases people have and we have studied about atherosclerosis for abdominal aorta. Atherosclerosis is the phenomenon which blood vessel gets narrower, harder and thicker due to the stenosis of colesterol in blood vessel. If it becomes worse, arteries will be hard and blood can't flow smoothly, and even it can reach to death. In this study, the geometric models of the considered stenotic blood flow are two different types of constriction of cross-sectional area of blood vessel; 20 and 45% of constriction in each elastic wall and rigid wall. We have modeled by using finite element method to observe the changes of velocity and pressure. In case of the diameter of blood vessel decreased 45% in elastic wall model, the values of velocity and pressure were higher than the case of 20% and in case of the diameter of blood vessel decreased 45% in rigid wall model, the values of velocity and pressure were higher than the case of 20%. In cases of elastic wall models of the diameters of blood vessels decreased each of 20% and 45%, recirculation zones appeared. This results show understanding of hemodynamic properties depending on stenosed blood vessels.

A Study on Effect of Residual Stress on Stress Distribution of Arterial Walls Under High Blood Pressure (잔류응력 효과를 고려한 고혈압 상태에 있는 혈관벽 내의 응력분포에 대한 연구)

  • Choi, Jae-Woo;Choi, Deok-Kee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.11
    • /
    • pp.1219-1227
    • /
    • 2011
  • Due to recent changes in living conditions, people who suffer from vascular disease have been increasing. As a result, several kinds of procedures to treat diseases of the blood vessels are being carried out and the epidemiological analysis and interpretation is needed. In this paper, the mechanical behavior of blood vessels based on hyperelastic model were evaluated. The stress distributions in the arterial walls subjected to both normal blood pressure and high blood pressure are studied along with different opening angles representing as the effect of the residual stress. As a result, when applied to residual stress effects in blood vessels to act maximum stress compared to as the absence of residual stress effect about 50% stresses can be reduced. When high blood pressure was the normal blood pressure acting on the blood vessel wall that twice stress can be confirmed.

Development of a Cardiovascular Simulator with Cardiovascular Characteristics (혈관계의 특성이 반영된 심혈관계 시뮬레이터의 개발)

  • Lee, Ju-Yeon;Shin, Sang-Hoon
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.16 no.3
    • /
    • pp.33-40
    • /
    • 2012
  • Objectives: Existing cardiovascular simulators are used to evaluate artificial organs such as artificial hearts, prosthetic valves, and artificial blood vessels, and pulses are typically triggered using artificial hearts. However, the forms of pulse waves vary according to the location of arteries, and for precise assessment of artificial blood vessels, the development of simulators that generate diverse pressure pulse waves is necessary. This study developed a novel cardiovascular simulator that generates different forms of pulse waves. Methods: This simulator consists of a stepping motor, a slider-crank mechanism that transforms the rotation movement of a motor into the straight-line motion of a piston, a piston that generates pulsatile flows, a water tank that supplies fluids, an elastic tube made of silicon, and a device that adjusts the terminal resistance of fluids. Results & Conclusion: This study examined motor rotation and its operation under conditions similar to the physiological conditions of the heart. The simulator developed in this study produced diverse forms of waves, and the generated pressure waves well satisfied physiological conditions.

EXPERIMENTAL STUDIES ABOUT HEALING PROCESS OF BLOOD VESSELS FOLLOWING MICROVASCULAR ANNASTOMOSES (미세혈관문합 후 혈관내벽의 치유과정에 관한 실험적 연구)

  • Choi, Sung-Weon;Kim, Sung-Moon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.16 no.4
    • /
    • pp.397-418
    • /
    • 1994
  • Microvascular surgery has been widely used in the clinical field of replantation and reconstructive surgery. Since the last 20 years, microsurgical techniques and instruments have been rapidly developed and the success rate is remarkably increased. But thrombotic occlusion of vessels remains the major reason for clinical failure. The change of vessel wall is the most important factor in thrombus formation. If we can reduce the traumatic changes in the vessel walls during surgery, the success rate can be markedly increased. For this study, femoral arteries and veins of 36 Sprague-Dawley rats with average weights of 300gm were used. The author observed the histological changes and healing process in the anastomostic site after 1 hour, 24 hours, 1, 2, 3 and 4 weeks under light microscopy and scanning electron microscopy. The results were as follows : 1. The patency rate was 100% in femoral arteries and 85% in femoral vein. 2. At the early stages after microvascular anastomosis, the loss of endothelial cell in the vessel walls was observed in the wide area including anastomotic site. In scanning electron microscopic finding the anastomotic site was covered with much fibrin, many red blood cells and some platelets. 3. At 1st week, new endothelial cells were formed toward anastomotic site and at 3rd week, the anastomotic site was completely covered by new endothelial cells. At 4th week, the complete endothelialization over the threads was observed. 4. The media extended from the anastomotic site toward the end of the specimen. At later stages, the extent of media necrosis was markedly decreased. But the media necrosis of anastomotic site was not regenerated till 4th week. 5. Intimal hyperplasia appeared at 1st week and increased till 4th week. The layer consisted of endothelialization the most luminal layers and smooth muscle in the deeper layers. But in veins, the response was less pronounced than in arteries. 6. Foreign body granuloma remained during 4 weeks and aneurysm was observed at 3rd week in artery. In aneurismal wall, media necrosis, loss of elastic lamina and intimal hyperplasia were seen.

  • PDF

Time-synchronized measurement and cyclic analysis of ultrasound imaging from blood with blood pressure in the mock pulsatile blood circulation system (박동 혈액 순환 모의 시스템에서 시간 동기화된 혈압 및 혈액의 초음파 영상 측정 및 주기적 분석)

  • Min, Soohong;Jin, Changzhu;Paeng, Dong-Guk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.5
    • /
    • pp.361-369
    • /
    • 2017
  • Hemodynamic information in the carotid artery bifurcation is very important for understanding the development and progression mechanisms of cerebrovascular disease and for its early diagnosis and prediction of the progress. In this paper, we constructed a mock pulsatile blood circulation system using an anthropomorphic elastic vessel of the carotid artery bifurcation and ex vivo pig blood to acquire ultrasound images from blood and vessels synchronized with internal pressure while controlling the blood flow. Echogenicity, blood flow velocity, and blood vessel wall motion from the ultrasound images, and internal blood pressure were extracted over a cycle averaged from five cycles when the pulsatile pump rates are 20 r/min, 40 r/min, and 60 r/min. As a result, respectively, the peak systolic blood flow velocities were 20 cm/s, 25 cm/s, and 40 cm/s, the blood pressure differences were 30 mmHg, 70 mmHg, and 85 mmHg, the arterial walls were expanded to 0.05 mm, 0.15 mm, and 0.25 mm. Time-delayed cyclic variation of echogenicity compared to blood flow and pressure was observed, but the variation was minimal at 20 r/min. Time-synchronized cyclic variations of these parameters are important information for accurate input parameters and validation of the computational hemodynamic experiments which will provide useful information for the development and progress mechanisms of carotid artery stenosis.

Method for Observing Intravascular BongHan Duct

  • Jiang Xiaowen;Kim Hee-Kyeong;Shin Hak-Soo;Lee Byung-Cheon;Choi Chun-Ho;Soh Kyung-Soon;Cheun Byeung-Soo;Baik Ku-Youn;Soh Kwang-Sup
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.6 no.1
    • /
    • pp.162-166
    • /
    • 2002
  • A method for observing intra blood vessel ducts which are threadlike bundle of tubules which form a part of the BongHan duct system. By injecting 10% dextrose solution at a vena femoralis one makes the intravascular BongHan duct thicker and stronger to be easily detectable after incision of vessels. The duct is semi-transparent, soft and elastic, and composed of smaller tubules whose diameters are of $10{\mu}m$ order, which is in agreement with BongHan theory.

  • PDF

Finite Element Analysis of Stent Expansion Considering Stent-Balloon Interaction (스텐트와 풍선의 상호작용을 고려한 스텐트 팽창의 유한요소해석)

  • Oh Byung-Ki;Cho Hae-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.1 s.232
    • /
    • pp.156-162
    • /
    • 2005
  • Stouts are frequently used throughout the human body, but the most critical areas are in coronary arteries. They open pathways in vessels and supply blood directly to the heart muscle. To simulate behavior of expansion for the coronary stent by balloon, the commercial finite element code LS-DYNA and ANSYS were used in the analysis. The explicit method is used to analyze the expansion of the stent and the implicit method is performed to simulate the springback that developed in a stent after the balloon pressure has been removed. Finally the experimental results for the expansion of the PS153 stents were compared with the FEM results. The springback was measured with the stents subjected to no external pressure to which stents are subjected in vivo. The simulated results were in good agreement with experimental results. Standard mechanical characteristics such as stress, plastic strains, and springback can be derived from the numerical results. These data can be used to determine maximum expansion diameter without fracture and expansion pressure considering elastic recoil.

Finite Element Analysis and Optimal Design of Shape Memory Composite Material Stents using Taguchi Method (다구찌 방법을 이용한 형상기억 복합재료 스텐트 유한요소 해석 및 최적설계)

  • Young Bin Kim;Suji Kim;Heechan Song;Heoung-Jae Chun
    • Composites Research
    • /
    • v.37 no.4
    • /
    • pp.301-309
    • /
    • 2024
  • Shape memory stents are used for treating vascular conditions like myocardial infarction, angina, and arteriosclerosis through their shape memory behavior. These stents are inserted into blood vessels to expand them, and their performance in terms of flexibility, elastic recovery, and deformation is influenced by their design. In this study, parameters affecting stent structural design were analyzed using Taguchi method, aiming to design structures that consider flexibility, elastic recovery, and deformation. Reflecting the actual conditions faced by stents, ISO standards were incorporated, and finite element analysis was conducted, considering shape memory composite material properties obtained from tensile tests, specifically hyperealstic properties. Ultimately, statistical significance of stent structural design was evaluated through ANOVA (Analysis of Variance), and an improved optimal design model compared to the existing one was proposed.