• Title/Summary/Keyword: Elastic Behaviour

Search Result 304, Processing Time 0.028 seconds

Case study on numerical analyses related to large rock caverns (지하공간에 관련된 수치해석의 사례연구)

  • Lee, Keun-Hi
    • Tunnel and Underground Space
    • /
    • v.2 no.1
    • /
    • pp.152-163
    • /
    • 1992
  • The study of rock mass behaviour through a numerical analysis is important for the design, construction and maintenance of large rock caverns. The objectives of the numerical analysis are to design reasonably and construct safely the underground structures, to maintain them soundly after construction and to extend them securely for a desired period of time. Methods of numerical analyses included in this case study are the finite element method, the boundary element method, and the distinct element method. The numerical models are purely elastic, elastoplastic, visco-elastic, visco-plastic, easto-visco-plastic and jointed-discontinuous materials. The results of this case study indicate that the rock mass behaviour could be predicted exactly through continuous comparisons of the numerical results with the in-situ measurements.

  • PDF

Strength of FRP RC sections after long-term loading

  • Pisani, M.A.
    • Structural Engineering and Mechanics
    • /
    • v.15 no.3
    • /
    • pp.345-365
    • /
    • 2003
  • The adoption of fibre reinforced polymer (FRP) rebars (whose behaviour is elastic-brittle) in reinforced concrete (RC) cross sections requires the assessment of the influence of time-dependent behaviour of concrete on the load-carrying capacity of these sections. This paper presents a method of computing the load-carrying capacity of sections that are at first submitted to a constant long-term service load and then overloaded up to ultimate load. The method solves first a non-linear visco-elastic problem, and then a non-linear instantaneous analysis up to ultimate load that takes into account the self-equilibrated stress distribution previously computed. This method is then adopted to perform a parametric analysis that shows that creep and shrinkage of concrete increase the load-carrying capacity of the cross section reinforced with FRP and allows for the suggestion of simple design rules.

A Study on the Secondary Buckling Behavior of Ship Plate (선체판부재의 2차좌굴거동에 관한 연구)

  • 고재용
    • Journal of the Korean Institute of Navigation
    • /
    • v.20 no.1
    • /
    • pp.47-58
    • /
    • 1996
  • The use of high tensile steel plates is increasing in the fabrication of ship and offshore structures. The main portion of ship structure is usually composed of stiffened plates. In these structures, plate buckling is one of the most important design criteria and buckling load may usually be obtained as an eigenvalue solution of the governing equations for the plate. To use the high tensile steel plate effectively, its thickness may become thin so that the occurrence of buckling is inevitable and design allowing plate buckling may be necessary. When the panel elastic buckling is allowed, it is necessary to get precise understandings about the post-buckling behaviour of thin plates. It is well known that a thin flat plate undergoes secondary buckling after initial buckling took place and the deflection of the initial buckling mode was developed. From this point of view, this paper discusses the post-buckling behaviour of thin plates under thrust including the secondary buckling phenomenon. Series of elastic large deflection analyses were performed on rectangular plates with aspect ratio 3.6 using the analytical method and the FEM.

  • PDF

A Study on Thermal Stress Analysis of Alumina Ceramics to Copper Brazement by Finite Element Method (알루미나 세라믹과 구리의 브레이징 접합물에 대한 열응력의 유한요소법 해석에 관한 연구)

  • 전창훈;양영수;나석주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.547-553
    • /
    • 1990
  • With alumina ceramics to copper brazement of cylindrical shape, the thermal stress analysis was carried out by finite element method. Elastic and plastic behaviour was considered to copper, but only elastic behaviour was considered to alumina. Also material properties of alumina and copper were considered in not constant values but variable functions dependent on temperature. The result of analysis is shown that maximum tensile longitudinal stress is occurred at perimeter of alumina side interface and maximum compressive radial and tangential stresses are occurred at center of alumina side interface. Because of bending effect, tensile raidial and tangential stresses are occurred at near bottom of alumina, far from interface.

Analysis of Elasto-Plastic Dynamic Behaviour of Plate Subjected to Load by Low Velocity Impact (저속충격 하중을 받는 판의 탄소성 동적거동 해석)

  • Huh, Gyoung-Jae;Dokko, Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.11
    • /
    • pp.158-164
    • /
    • 2000
  • In this study a computer program is developed for analyzing the elasto-plastic dynamic behaviors of the plate subjected to line-loading by a low-velocity impactor. The equilibrium equation associated with the Hertzian contact law is formulated to evaluate the transient dynamic behaviour of the impacted plate. Compared with an elastic analysis, the effects of material plasticity are presented. Consequently, in the case of elasto-plastic analysys, impulse decreases, displacements increase and contact time duration is longer than the elastic case for same finite element model. And the time variation of the impacting load is not significant due to the plasticity except at the beginning of impact duration, and the induced stresses of the plate are more realistic.

  • PDF

Vibration based energy harvesting performance of magneto-electro-elastic beams reinforced with carbon nanotubes

  • Arjun Siddharth Mangalasseri;Vinyas Mahesh;Sriram Mukunda;Vishwas Mahesh;Sathiskumar A Ponnusami;Dineshkumar Harursampath;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.14 no.1
    • /
    • pp.27-43
    • /
    • 2023
  • This article investigates the energy harvesting characteristics of a magneto-electro-elastic (MEE) cantilever beam reinforced with carbon nanotubes (CNT) under transverse vibration. To this end, the well-known lumped parameter model is used to represent the coupled multiphysics problem mathematically. The proposed system consists of the MEE-CNT layer on top and an inactive substrate layer at the bottom. The substrate is considered to be made of either an isotropic or composite material. Basic laws such as Gauss's Law, Newton's Law and Faraday's Law are used to arrive at the governing equations. Surface electrodes across the beam are used to harvest the electric potential produced, together with a wound coil, for the generated magnetic potential. The influence of various distributions of the CNT and its volume fraction, substrate material, length-to-thickness ratio, and thickness ratio of substrate to MEE layer on the energy harvesting behaviour is thoroughly discussed. Further, the effect of external resistances and changes in substrate material on the response is analysed and reported. The article aims to explore smart material-based energy harvesting systems, focusing on their behaviour when reinforced with carbon nanotubes. The results of this study may lead to an improved understanding of the design and analysis of CNT-based smart structures.

An Experimental Study on the Flexural Strength of Hybrid Beam (하이브리드 보의 휨성능에 관한 실험적 연구)

  • Hong, Sung-Gul;Yang, Dong-Hyun;Lim, Byung-Ho;Ryu, Jae-Chun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.398-401
    • /
    • 2006
  • This study investigates the behaviour of Hybrid Beam with reinforced concrete encased steel center and reinforced concrete end. Two types of encased steel shape and two sections are examined in this study. Test results showed that H-Hybrid beam is stronger than Honey-comb Hybrid beam, and the behaviour of composite beam embedded steel at the elastic state is same as that of simple beam.

  • PDF

Comparative dynamic analysis of axially loaded beams on modified Vlasov foundation

  • Hizal, Caglayan;Catal, Hikmet Huseyin
    • Structural Engineering and Mechanics
    • /
    • v.57 no.6
    • /
    • pp.969-988
    • /
    • 2016
  • Vibration analysis of the beams on elastic foundation has gained the great interest of many researchers. In the literature, there are many studies that focus on the free vibration analysis of the beams on one or two parameter elastic foundations. On the other hand, there are no sufficient studies especially focus on the comparison of dynamic response including the bending moment and shear force of the beams resting on Winkler and two parameter foundations. In this study, dynamic response of the axially loaded Timoshenko beams resting on modified Vlasov type elastic soil was investigated by using the separation of variables method. Governing equations were obtained by assuming that the material had linear elastic behaviour and mass of the beam was distributed along its length. Numerical analysis were provided and presented in figures to find out the differences between the modified Vlasov model and conventional Winkler type foundation. Furthermore, the effect of shear deformation of elastic soil on the dynamic response of the beam was investigated.

Investigation of semi-rigid bolted beam connections on prefabricated frame joints

  • Irtem, E.;Turker, K.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.4
    • /
    • pp.397-408
    • /
    • 2001
  • Bolted connections are used commonly in the precast reinforced concrete structures. In such structures, to perform structural analysis, behaviour of connections must be determined. In this study, elastic rotation stiffness of semi-rigid bolted beam connections, applied in industrial precast structures, are determined by finite element methods. The results obtained from numerical solutions are compared with an experimental study carried out for the same connections. Furthermore, stress distributions of the connection zone are determined and a reinforcement scheme is proposed. Thus, a more appropriate reinforcement arrangement for the connection zone is enabled. The connection joint of the prefabricated frame is described as rigid, hinged or elastic, and a static analysis of the frame system is performed for each case. Values of bending moments and displacements obtained from the three solutions are compared and the effects of elastic connection are discussed.

Experimental and Numerical Assessment of the Service Behaviour of an Innovative Long-Span Precast Roof Element

  • Lago, Bruno Dal
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.261-273
    • /
    • 2017
  • The control of the deformative behaviour of pre-stressed concrete roof elements for a satisfactory service performance is a main issue of their structural design. Slender light-weight wing-shaped roof elements, typical of the European heritage, are particularly sensitive to this problem. The paper presents the results of deformation measurements during storage and of both torsional-flexural and purely flexural load tests carried out on a full-scale 40.5 m long innovative wing-shaped roof element. An element-based simplified integral procedure that de-couples the evolution of the deflection profile with the progressive shortening of the beam is adopted to catch the experimental visco-elastic behaviour of the element and the predictions are compared with normative close-form solutions. A linear 3D fem model is developed to investigate the torsional-flexural behaviour of the member. A mechanical non-linear beam model is used to predict the purely flexural behaviour of the roof member in the pre- and post-cracking phases and to validate the loss prediction of the adopted procedure. Both experimental and numerical results highlight that the adopted analysis method is viable and sound for an accurate simulation of the service behaviour of precast roof elements.