• Title/Summary/Keyword: Elastic Beam

Search Result 1,149, Processing Time 0.029 seconds

Microstructural Morphology and Bending Performance Evaluation of Molded Microcomposites of Thermotropic LCP and PA6 (액정폴리머/폴리아미드6 미시복합재료의 내부구조 및 기계적 굽힘성능 평가)

  • ;Kiyoshi Takahashi
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.53-64
    • /
    • 1999
  • Microstructural morphology and bending strengths of moulded composites of thermotropic liquid crystalline polymer(LCP) and polyamide 6 (PA6) have been studied as a function of epoxy fraction. Injection-moulding of a composite plaque at a temperature below the melting point of the LCP fibrils generated a multi-layered structure: the surface skin layer with thickness of $65\;-\;120{\mu\textrm{m}}$ exhibiting a transverse orientation; the sub-skin layer with an orientation in the flow direction; the core layer with arc-curved flow patterns. The plaques containing epoxy 4.8vol% exhibited superior bending strength and large fracture strain. With an increase of epoxy fraction equal to and beyond 4.8vol%, geometry of LCP domains was changed from fibrillar shape to lamella-like one, which caused a shear-mode fracture. An analysis of the bending strength of the composite plaques by using a symmetric layered model beam suggested that addition of epoxy component altered not only the microstructural geometry but also the elastic moduli and strengths of the respective layers.

  • PDF

Measuring the Tensile Properties of the Nanostructure Using a Force Sensor (힘센서를 이용한 나노구조체의 인장물성 측정)

  • Jeon, Sang-Gu;Jang, Hoon-Sik;Kwon, Oh-Heon;Nahm, Seung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.211-217
    • /
    • 2010
  • It is important to measure the mechanical properties of nanostructures because they are required to determine the lifetime and reliability of nanodevices developed for various fields. In this study, tensile tests for a multi-walled carbon nanotube (MWCNT) and a ZnO nanorod were performed in a scanning electron microscope (SEM). The force sensor was a cantilever type and was mounted in front of a nanomanipulator placed in the chamber. The nanomanipulator was controlled using a joystick and personal computer. The nanostructures dispersed on the cut area of a transmission electron microscope (TEM) grid were gripped with the force sensor by exposing an electron beam in the SEM; the tensile tests were the performed. The in situ tensile loads of the nanostructure were obtained. After the tensile test, the cross-sectional areas of the nanostructures were observed by TEM and SEM. Based on the TEM and SEM results, the elastic modulus of the MWCNT and ZnO nanorod were calculated to be 0.98 TPa and 55.85 GPa, respectively.

Ultimate Analysis of Reinforced Concrete Beams (철근콘크리트 보의 극한해석)

  • 김태형;김운학;신현목
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.1
    • /
    • pp.145-155
    • /
    • 1995
  • The purpose of this paper is to present an analysis method which can exactly analyze load-deflection relationships. crack propagations and stresses and strains of steel reinforccnlent and concrete in hehaviors of elastic, mclastic and ultlmate ranges of reinforced concretc beams under monotonically increasing loads. For these purposes, the material nonlinearities are taken into account by comprising the tension. compression and shear models of cracked concrete and a model for reinforcement in the concrete. Smeared crack model is used as a modeling of concrete. The steel reinforcement is assumed to be in an uniaxial stress state and modeled srncaretl layers of eqivalent thickness and line elernents for correct positiori arid behavior. For the verification of application and validity of the method proposed in this paper, several numerical examples are analyzed and compared with those from other researchers. As a results, this method shown in 3.5-15(%) error is correct.

Three-dimensional analysis of the distal movement of maxillary 1st molars in patients fitted with mini-implant-aided trans-palatal arches

  • Miresmaeili, Amirfarhang;Sajedi, Ahmad;Moghimbeigi, Abbas;Farhadian, Nasrin
    • The korean journal of orthodontics
    • /
    • v.45 no.5
    • /
    • pp.236-244
    • /
    • 2015
  • Objective: The aim of this study was to investigate three-dimensional molar displacement after distalization via miniscrews and a horizontal modification of the trans-palatal-arch (TPA). Methods: The subjects in this clinical trial were 26 Class II patients. After the preparation of a complete set of diagnostic records, miniscrews were inserted between the maxillary 2nd premolar and 1st molar on the palatal side. Elastic modules connected to the TPA exerting an average force of 150-200 g/side parallel to the occlusal plane were applied. Cone-beam computed tomography was utilized to evaluate the position of the miniscrews relative to the adjacent teeth and maxillary sinus, and the direction of force relative to molar furcation. The distances from the central point of the incisive papilla to the mesiopalatal cusps of the 1st maxillary molars and the distances between the mesiopalatal cusps of the left and right molars were measured to evaluate displacement of the maxillary molars on the horizontal plane. Interocclusal space was used to evaluate vertical changes. Results: Mean maxillary 1st molar distalization was $2.3{\pm}1.1mm$, at a rate of $0.4{\pm}0.2mm/month$, and rotation was not significant. Intermolar width increased by $2.9{\pm}1.8mm$. Molars were intruded relative to the neighboring teeth, from 0.1 to 0.8 mm. Conclusions: Distalization of molars was possible without extrusion, using the appliance investigated. The intrusive component of force reduced the rate of distal movement.

Structural Optimization of Active Vehicle Suspension Systems (능동형 차량 현가장치의 성능 향상을 위한 구조 최적화)

  • 김창동;정의봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.6
    • /
    • pp.1381-1388
    • /
    • 1993
  • This paper presents a method for the simultaneous optimal design of structural and control systems. Sensitivities of performance index with respect to structural design variables are analyzed. The structural design variables are optimized to minimize the performance index by use of conjugate gradient method. The method is applied to a half model of an active vehicle suspension system with elastic body moving on a randomly profiled road. The suspension control force of an optimally controlled system in the presence of measurement errors are calculated by use of linear quadratic Gaussian control theory and Kalman filter theory. The performance index contains ride comfort, road holding and working space of suspension. The structural design variables taken are stiffness, daming properties and the position of the suspension system. The random road profile considered as colored noise is shaped from white noise by use of shaping filter. The performance of an optimal simultaneous structure/control system is compared with that of an optimal controlled system.

Reliability Analysis for Fatigue Damage of Steel Bridge Details (강교 부재의 피로손상에 대한 신뢰성 해석)

  • Park, Yeon Soo;Han, Suk Yeol;Suh, Byoung Chal
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.475-487
    • /
    • 2003
  • This study developed an analysis model of estimating fatigue damage using the linear elastic fracture mechanics method. Stress history occurring to an element when a truck passed over a bridge was defined as block loading and crack closure theory explaining load interaction effect was applied. Stress range frequency analysis considering dead load stress and crack opening was done. Probability of stress range frequency distribution was applied and the probability distribution parameters were estimated. The Monte Carlo simulation of generating the probability various of distribution was performed. The probability distribution of failure block numbers was obtained. With this the fatigue reliability of an element not occurring in failure could be calculated. The failure block number divided by average daily truck traffic remains the life of a day. Fatigue reliability analysis model was carried out for the welding member of cross beam flange and vertical stiffener of steel box bridge using the proposed model. Consequently, a 3.8% difference was observed between the remaining life in the peak analysis method and in the proposed analysis model. The proposed analysis model considered crack closure phase and crack retard.

Inelastic and Local Buckling Behavior of H-Beams with Web Opening under Cyclic Loadings (반복하중을 받는 H형강 유공보의 소성 및 국부좌굴 거동)

  • Lee, Eun Taek;Kim, Cheol Hwan;Oh, Woo Hun
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.271-279
    • /
    • 2003
  • Many researches have been conducted to describe the elastic and inelastic behavior of H-shaped beams with web openings, and were generally concentrated on the uniaxial loading conditions. With previous research results, the formulae for the design of beams with web openings, considering local buckling, have been proposed by Darwin. Although the formulae are so simple and useful to apply to real situations, it needs more research on cyclic loading conditions. In this experimental study, a total of seven H-shaped beams with circular web openings under cyclic loading conditions were investigated. The dimension criteria were based on the formulae proposed by Darwin. The suitability of the existing design formulae, the effects of plastic hinges on beams with web openings, and the local bucking around the web openings to the beam strength under cyclic loading were also investigated through by the observations of the behavior of these beams with various dimensional openings.

Development of a Finite Element Program for Determining Mat Pressure in the Canning Process for a Catalytic Converter (촉매변환기를 캐닝할 때 발생하는 매트의 압력분포 유한요소해석 프로그램의 개발)

  • Chu, Seok-Jae;Lee, Young-Dae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1471-1476
    • /
    • 2011
  • The catalytic converter in the front part of an automobile's exhaust system converts toxic exhaust gas into nontoxic gas. The substrate in the central part of the converter has a circular or oval-shaped cross section and fine lattice-shaped walls. In the canning process, the substrate is wrapped in mats and inserted into a can. During this process, mat pressure is induced, which may cause brittle fracturing in the substrate. In this paper, a finite element program for determining the mat pressure distribution was developed to avoid these fractures. The program was created in Microsoft EXCEL, so the input and output procedures are relatively simple. It was assumed that the substrate is rigid, the mat is material nonlinear, and the can is linear elastic. The can is modeled as a beam element to resist both bending and uniform tension/compression. The number of elements is fixed to 35, and the number of iterations, to 20. The solutions are compared to ABAQUS solutions and found to be in good agreement.

Nonlinear response of the pile group foundation for lateral loads using pushover analysis

  • Zhang, Yongliang;Chen, Xingchong;Zhang, Xiyin;Ding, Mingbo;Wang, Yi;Liu, Zhengnan
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.273-286
    • /
    • 2020
  • The pile group foundation is widely used for gravity pier of high-speed railway bridges in China. If a moderate or strong earthquake occurs, the pile-surrounding soil will exhibit obvious nonlinearity and significant pile group effect. In this study, an improved pushover analysis model for the pile group foundation with consideration of pile group effect is presented and validated by the quasi-static test. The improved model uses simplified springs to simulate the soil lateral resistance, side friction and tip resistance. PM (axial load-bending moment) plastic hinge model is introduced to simulate the impact of the axial force changing of pile group on their elastic-plastic characteristics. The pile group effect is considered in stress-stain relations of the lateral soil resistance with a reduction factor. The influence factors on nonlinear characteristics and plastic hinge distribution of the pile group foundation are discussed, including the pier height, longitudinal reinforcement ratio and stirrup ratio of the pile, and soil mechanical parameters. Furthermore, the displacement ductility factor, resistance increase factor and yielding stiffness ratio are provided to evaluate the seismic performance of soil-pile system. A case study for the pile group foundation of a railway simply supported beam bridge with a 32 m-span is conducted by numerical analysis. It is shown that the ultimate lateral force of pile group is not determined by the yielding force of the single one in these piles. Therefore, the pile group effect is essential for the seismic performance evaluation of the railway bridge with pile group foundation.

High aspect ratio wrinkled patterns on polymers by glancing angle deposition

  • Ko, Tae-Jun;Ahmed, Sk. Faruque;Lee, Kwang-Ryeol;Oh, Kyu-Hwan;Moon, Myoung-Woon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.335-335
    • /
    • 2011
  • Instability of a thin film attached to a compliant substrate often leads to emergence of exquisite wrinkle patterns with length scales that depend on the system geometry and applied stresses. However, the patterns that are created using the current techniques in polymer surface engineering, generally have low aspect ratio of undulation amplitude to wavelength, thus, limiting their application. Here, we present a novel and effective method that enables us to create wrinkles with a desired wavelength and high aspect ratio of amplitude over wavelength as large as to 2.5:1. First, we create buckle patterns with high aspect ratio of amplitude to wavelength by deposition of an amorphous carbon film on a surface of a soft polymer poly(dimethylsiloxane) (PDMS). Amorphous carbon films are used as a protective layer in structural systems and biomedical components, due to their low friction coefficient, strong wear resistance against, and high elastic modulus and hardness. The deposited carbon layer is generally under high residual compressive stresses (~1 GPa), making it susceptible to buckle delamination on a hard substrate (e.g. silicon or glass) and to wrinkle on a flexible or soft substrate. Then, we employ glancing angle deposition (GLAD) for deposition of a high aspect ratio patterns with amorphous carbon coating on a PDMS surface. Using this method, pattern amplitudes of several nm to submicron size can be achieved by varying the carbon deposition time, allowing us to harness patterned polymers substrates for variety of application. Specifically, we demonstrate a potential application of the high aspect wrinkles for changing the surface structures with low surface energy materials of amorphous carbon coatings, increasing the water wettability.

  • PDF