• Title/Summary/Keyword: Ekman Layer

Search Result 48, Processing Time 0.034 seconds

Rotating Flows in a Circular Cylinder with Unstable Stratification (불안정 성층화를 가진 원통형 용기 내의 회전유동에 관한 연구)

  • Kim, Jae-Won
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.27-38
    • /
    • 1998
  • Rotating flow of a stratified fluid contained in a circular cylinder with unstable temperature gradient imposed on the side wall of it has been numerically studied. The temperatures at the endwall disks are constant. The top disk of the container is coider than that of the bottob disk, as much as the temperature difference n${\Delta}$T, (0${\leq}$n${\leq}$3). Flows in the vessel are driven by an impulsive rotation of the hot bottom disk with respect to the central axis of the cylinder. Flow details have been acquired. For this flow, the principal balance in the interior core is characterized by a relationship between the radial temperature gradient and the vertical shear in the azimuthal velocity. As the buoyancy effect becomes appreciable, larger portions of the meridional fluid transport are long-circuit from the bottom disk to the interior region via the side wall.

  • PDF

Numerical Simulation toy Flow Disturbance Between 3.5' Co-rotating Disks Unobstructed in Shroud (장애물이 없는 3.5' 동시회전 디스크의 유동교란에 관한 수치적 연구)

  • Kong Dae-Wee;Joo Won-Gu
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.242-245
    • /
    • 2005
  • The rotating flow in the space between co-rotating disks is of considerable importance in information storage systems. Hard disk drivers(HDD) in computer are used extensively as data storage capacity. The trend in the computer industry to produce smaller disk drives rotating at higher speed requires an improved understanding of fluid motion in the space between disks. In this study, we have tried LES model for inner-disk flowfield to investigate the flow disturbance and the flow structure driven by co-rotating disks. The boundary pattern between inner region and outer region obtained lobe-shape structure clearly and its number has been validated on experimental data by our previous study. We obtain the spectra of velocity and pressure components with several frequencies. We revealed there are two kinds of disturbances, one is global wave propagation and another is local wave propagation on Ekman boundary layer.

  • PDF

LARGE-SCALE VERSUS EDDY EFFECTS CONTROLLING THE INTERANNUAL VARIATION OF MIXED LAYER TEMPERATURE OVER THE NINO3 REGION

  • Kim, Seung-Bum;Lee, Tong;Fukumori, Ichiro
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.21-24
    • /
    • 2006
  • Processes controlling the interannual variation of mixed layer temperature (MLT) averaged over the NINO3 domain ($150-90^{\circ}W$, $5^{\circ}N-5^{\circ}S$) are studied using an ocean data assimilation product that covers the period of 1993 to 2003. Advective tendencies are estimated here as the temperature fluxes through the domain's boundaries, with the boundary temperature referenced to the domain-averaged temperature to remove the dependence on temperature scale. The overall balance is such that surface heat flux opposes the MLT change but horizontal advection and subsurface processes assist the change. The zonal advective tendency is caused primarily by large-scale advection of warm-pool water through the western boundary of the domain. The meridional advective tendency is contributed mostly by Ekman current advecting large-scale temperature anomalies though the southern boundary of the domain. Unlike many previous studies, we explicitly evaluate the subsurface processes that consist of vertical mixing and entrainment. In particular, a rigorous method to estimate entrainment allows an exact budget closure. The vertical mixing across the mixed layer (ML) base has a contribution in phase with the MLT change. The entrainment tendency due to temporal change in ML depth is negligible comparing to other subsurface processes. The entrainment tendency by vertical advection across the ML base is dominated by large-scale changes in wind-driven upwelling and temperature of upwelling water. Tropical instability waves (TIWs) result in smaller-scale vertical advection that warms the domain during La Ni? cooling events. When the advective tendencies are evaluated by spatially averaging the conventional local advective tendencies of temperature, the apparent effects of currents with spatial scales smaller than the domain (such as TIWs) become very important as they redistribute heat within the NINO3 domain. However, such internal redistribution of heat does not represent external processes that control the domain-averaged MLT.

  • PDF

The Flow Characteristics in a Shallow Rectangular Tank by Vortex Shedding (보텍스 쉐딩에 의한 얕은 직사각형통 내에서의 유동특성)

  • 서용권;문종춘
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.8
    • /
    • pp.2122-2130
    • /
    • 1993
  • A numerical and experimental study has been performed on the flow in a shallow rectangular tank accompanying a vortex shedding. The model is composed of a rectangular tank with a vertical plate with a length half the width of the tank. The tank is subject to a horizontal sinusoidal oscillation. The numerical analysis shows that the pattern of vortex shedding changes considerably when the Reynolds number $R_e$ is varied from 500 to 7500. It is symmetric for $R_e$ <1500 and asymmetric for $R_e$ > 1500. The kinetic energies of the right-hand and left-hand sides of the vertical plate are used to quantify the degree of the asymmetry. Experimental visualization is carried out at $R_e$ = 3876 and 52000. The development of the streamline pattern at $R_e$ = 3876 is in closer agreement with the numerical result at $R_e$ = 1000 than that at $R_e$ =3876. The asymmetric pattern is observed at $R_e$ = 52000.

Seasonal Variations of Physical Conditions and Currents in the Sea Near Gadeok-Sudo (가덕수도 근해에서 물리적 현상과 해류의 계절 변동)

  • Jang, Sung-Tae;Jeon, Dong-Chull;Shin, Chang-Woong
    • Ocean and Polar Research
    • /
    • v.30 no.1
    • /
    • pp.33-46
    • /
    • 2008
  • In order to investigate seasonal variations of the physical environments in the region of Jinhae Bay-Nakdongpo, we carried out hydrographic surveys from November 2000 to November 2001. Horizontal and vertical distribution of salinity and temperature shows large seasonal variations. Water column is well mixed in winter and stratified in summer. Low-salinity water is distributed in the form of patches because of the drainage control at the Nakdong River. Seasonal variations in the sea near Gadeok-Sudo are affected by topography, river discharge and tidal current. Currents have been measured using a bottom mounted ADCP and DCM12 between November 2000 and August 2001 in the Gadeok-Sudo. The current in the Gadeok-Sudo shows a distinct two-layer structure with reversed current. Low-pass filtered time series of wind, sea elevation and current are coherent for the period of 1-2 days and are attributed to Ekman-like dynamics. Spatial and temporal circulation pattern shows a slight different. The subtidal current in Jinhae Bay goes northward, however is reversed in the Gadeok-Sudo mouth.

Onset of Inertial Oscillation in a Rotating Flow (회전유동에서의 관성진동 원인규명)

  • Park, Jun-Sang
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2536-2539
    • /
    • 2008
  • A study has been made on how to occur inertial oscillations in a rotating flow. The flow is considered to be induced by differentially-rotating top and bottom disks with infinite radius. The top and bottom disks are assumed to be set in motion over a finite initial start-up time duration from initial solid body rotation ($\Omega$) to each finial state, i.e., the top disk is rotating at the angular velocity (${\Omega}+{\Delta}{\Omega}$) and the bottom disk (${\Omega}-{\Delta}{\Omega}$). The system Reynolds number, which is a reciprocal of conventional Ekman number in rotating flows, is very high so that a boundary layer flow near disks is pronounced. From a strict theoretical analysis, it is clearly found the fact that inertial oscillation in a rotating flow is caused by excessive input of torque during start-up phase. Above finding comes from the following physics of theoretical result: in the case of abrupt start-up within very shorter time-duration than spin-up time scale, the inertial oscillation is magnified but it could be completely depressed in the case of mildly accelerated start-up, i.e., start-up process being established over diffusion time scale.

  • PDF

Characteristic of flow pattern and Particle Suspension in a Bottom Baffled Agitated Vessel (교반조 바닥의 방해판이 유동특성 및 입자부유에 미치는 특성)

  • Lee, Young-Sei
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.2
    • /
    • pp.1549-1554
    • /
    • 2015
  • This study examined experimentally the characteristics of the flow pattern and particle suspension in an agitated vessel with a bottom baffle. A flow pattern of the particles was shown to increase the upward flow from the center of the agitated vessel bottom. The suspended particles from the experiment found that the particle suspension was promoted by the development of an Ekman boundary layer. The optimal conditions of the impeller, and the agitated vessel bottom baffle within the experimental range were as follows: Impeller, $n_p=6$, d/D=0.5, and b/d=0.3; and bottom baffle, $n_b=6$, $d_b/D=0.5$ and $b_w/D=0.05$.

Injection of a Denser Fluid into a Rotating Cylindrical Container Filled with Homogeneous Lighter Fluid (균질의 회전유체에 고밀도유체 주입실험)

  • 나정열;황병준
    • 한국해양학회지
    • /
    • v.30 no.4
    • /
    • pp.355-364
    • /
    • 1995
  • A heavy fluid is injected to a rotating cylindrical container of flat or inclined bottom filled with homogeneous lighter fluid. Continuous flow-in and spreading patterns over the bottom of the container are observed and at the same time upper-layer motions induced by the movement of the heavy fluid are traced by thymol blue solution. Regardless of bottom geometry, the injected denser fluid is deflected toward "western wall" and continuous its path along the boundary with radial spreading which occurs in the bottom boundary layer to make a quite asymmetric flow. When the bottom contains a slope(${\beta}$-plane), increased pressure gradient causes the fluid move faster to produce a stronger Coriolis force. This makes the width of the flow narrower than that of f-plane. But, when the denser flow reaches the southern part of the container, a local-depth of denser fluid increases (much greater than the Ekman-layer depth) such that the spreading velocity along the wall is reduced and the interfacial slope increases to make the upper-layer adjust geographically to have oppositely directed upper-layer motion along the interfacial boundary. The role of the denser fluid in terms of vorticity generation in the upper-layer is such that it produces local topographic effect over the western half of the container and also induces vortex-tube stretching which is especially dominant in the f-plane.

  • PDF

Effect of the Bottom Slope on the Formation of Coastal Front and Shallow-Sea Structure during Cold-Air Outbreak

  • Cheong, Hyeong-Bin;Kim, Young-Seup;Hong, Sung-Keun;Cheong, Hyeong-Bin
    • Journal of the korean society of oceanography
    • /
    • v.32 no.3
    • /
    • pp.93-102
    • /
    • 1997
  • Coastal circulations during the (surface condition of an) idealized cold-air outbreak are numerically investigated with two-dimensional, non-hydrostatic model in which a constant bottom-slope exists. The atmospheric forcing during a cold-air outbreak is incorporated as the surface cooling and the wind stress. When the offshore angle of the wind-stress vector, defined as the angle measured from the alongshore axis, is smaller than 45 degrees, a strong downwelling circulation develops near the coast. A sharp density front, which separates the vertically homogeneous region from the offshore stratified region, is formed near the coast and propagates offshore with time. Onshore side of the density front, small-scale circulation cells which are aligned in the direction perpendicular to the bottom begin to develop as the near-coast homogeneous region broadens. The surface cooling enhances greatly the development of the surface mixed layer by convective motions due to hydrostatic instability. The convective motions reach far below the hydrostatically unstable layer which is attached to the surface. The small-scale circulation cells are appreciably modified by the convetion cell and the density front develops far offshore compared to the case of no surface cooling. As to the effect of the bottom slope, the offshore distance of the density front increases (decreases) as the bottom slope decreases (increases), which results from the fact that the onshore volume-transport (Ekman transport) of the low-density upper seawater remains almost constant when the wind-stress is maintained constant. It is shown that the bottom slope is an essential factor for the formation of both the density front and the alongshore current when the surface cooling is the only forcing.

  • PDF

Current Structure and Variability in Gwangyang Bay in Spring 2006 (2006년 봄철 광양만 해류의 구조와 변동)

  • Lee, Jae-Chul;Kim, Jeong-Chang
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.3
    • /
    • pp.219-224
    • /
    • 2007
  • Two monitoring buoys equipped with ADCP were deployed at the deepest positions along the trough of the central Gwangyang Bay in spring 2006 in order to study the circulation in the bay. Northward velocity is commonly dominant at both stations located in the eastern part of the channel, which supports the cyclonic circulation accompanied by the southward flow in the western part. The southern station has a distinct two-layer structure with current reversal at 14 m depth and increasing northward velocity in the lower layer to 36 m depth close to the bottom. At the northern station the northward flow becomes accelerated due to the decrease in the cross-sectional area and this northward current is dominant even in the upper layer. In the modal structure from the EOF analysis, the first mode has 74% of total variance at the northern station whereas it is 67% but the baroclinic portion increases at the southern station. The typical northward velocity is about 10 cm/s which is associated with the cyclonic circulation. Subtidal variability due to the local wind effect is negligible, but the nonlocal response associated with offshore Ekman flux by the zonal wind is found during strong wind events.