• Title/Summary/Keyword: Ejung-tang

Search Result 7, Processing Time 0.019 seconds

Effects of Red Ginseng-Ejung-tang and White Ginseng-Ejung-tang Water Extract on Hydrogen Peroxide Production in RAW 264.7 Cells (백삼(白蔘)과 홍삼(紅蔘)이 포함된 이중탕(理中湯)의 마우스 대식세포 내 hydrogen peroxide 생성에 미치는 영향)

  • Park, Wan-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.1
    • /
    • pp.78-83
    • /
    • 2011
  • The purpose of this study is to investigate whether the intracellular hydrogen peroxide productions of mouse macrophage RAW 264.7 are modulated by Red Ginseng-Ejung-tang water extract (ER) and White Ginseng-Ejung-tang water extract (EG). Red Ginseng-Ejung-tang were composed of Red Ginseng, Atractylodes rhizome white, Zingiberis Rhizoma Siccus, and Glycyrrhizae Radix. White Ginseng-Ejung-tang were composed of White Ginseng, Atractylodes rhizome white, Zingiberis Rhizoma Siccus, and Glycyrrhizae Radix. The intracellular hydrogen peroxide productions were measured by dihydrorhodamine 123 assay with spectrofluorometer (excitation 485 nm; emission 535 nm). For 4, 20, 24, 44, 48, 68, and 72 h incubation, ER significantly increased hydrogen peroxide productions of RAW 264.7 at the concentration of 25, 50, 100, and $200{\mu}g/mL$ (P <0.05). EG for 4, 20, 24, 44, and 48 h incubation significantly increased hydrogen peroxide productions of RAW 264.7 at the concentration of 25, 50, 100, and $200{\mu}g/mL$ (P <0.05). For 68 and 72 h incubation, EG at the concentration of 50, 100, and $200{\mu}g/mL$ significantly increased hydrogen peroxide productions in RAW 264.7 (P <0.05). These results suggest that ER and EG have the immune-enhancing properties related with their increasing effects on the intracellular hydrogen peroxide production of macrophage.

Effect of White Ginseng-Ejung-tang and Red Ginseng-Ejung-tang Water Extract on Production of Chemokines and IL-21 in LPS-induced RAW 264.7 Mouse Macrophages (LPS로 유발된 마우스 대식세포의 케모카인류 염증인자 생성에 미치는 백삼이중탕 및 홍삼이중탕의 영향비교)

  • Park, Wan Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.6
    • /
    • pp.795-801
    • /
    • 2013
  • The purpose of this study is to investigate effects of White Ginseng-Ejung-tang (EG) and Red Ginseng-Ejung-tang (ER) water extract on production of various cytokines such as interleukin (IL)-21, IL-25, IL-$28{\beta}$, erythropoietin (EPO), Exodus-2, monocyte chemotactic protein (MCP)-5, macrophage inflammatory protein (MIP)-$3{\alpha}$, MIP-$3{\beta}$, Fractalkine, and TARC in RAW 264.7 mouse macrophages stimulated by lipopolysaccharide (LPS). Levels of cytokines were measured by High-throughput multiplex bead array cytokine assay based on xMAP (multi-analyte profiling beads) technology. ER significantly decreased levels of IL-21, IL-25, IL-$28{\beta}$, EPO, Exodus-2, MCP-5, MIP-$3{\alpha}$, MIP-$3{\beta}$, TARC, and fractalkine for 24 h incubation at the oncentrations of 25 and 100 ${\mu}g/mL$ in LPS-induced RAW 264.7 (P < 0.05). But EG did not show any significant effect. These results suggest that ER has anti-inflammtory property related with its inhibition on the production of IL-21, IL-25, IL-$28{\beta}$, and chemokines such as EPO, MCP-5, MIP-$3{\alpha}$, MIP-$3{\beta}$, Fractalkine, Exodus-2, and TARC in LPS-induced macrophages.

Effects of White Ginseng-Ejung-tang Acupuncture Solution on Nitric Oxide and Hydrogen Peroxide Production in LPS-induced Mouse Macrophages (백약(白藥)이 포함된 이중탕(理中湯)약침액의 LPS로 유발된 마우스 대식세포의 nitric oxide 및 hydrogen peroxide 생성에 미치는 영향)

  • Lee, Ji-Young;Kim, Young-Jin;Park, Wan-Su
    • Korean Journal of Acupuncture
    • /
    • v.28 no.1
    • /
    • pp.61-69
    • /
    • 2011
  • Objectives : The purpose of this study is to investigate effects of White Ginseng-Ejung-tang acupuncture solution (EJ) on nitric oxide (NO) and of hydrogen peroxide production in RAW 264.7 mouse macrophages stimulated by lipopolysaccharide (LPS). Methods : Cell viability was measured by modified MTT assay. NO production was measured by Griess reagent assay. Hydrogen peroxide production was measured by dihydrorhodamine 123 (DHR) assay. Significant differences were examined by using a Student's t-test. Results : The results of the experiment are as follows. 1. EJ did not show cell toxicity against RAW 264.7 cells for 24 hr incubation at the concentrations of up to $200\;{\mu}g$/mL in RAW 264.7 cells. 2. EJ significantly inhibited NO production for 24 hr incubation in RAW 264.7 cells (p <0.05). 3. EJ significantly inhibited the LPS-induced production of NO for 24 hr incubation in RAW 264.7 cells (p <0.05). 4. EJ significantly inhibited the LPS-induced production of hydrogen peroxide for 16, 24, 40, 48, 64, and 72 hr incubation in RAW 264.7 cells (p <0.05). Conclusions : These results suggest that EJ has an anti-inflammtory property related with its inhibition of NO and hydrogen peroxide production in LPS-induced macrophages.

Effects of Red Ginseng-Ejung-tang Water Extract on Cytokine Production in LPS-induced Mouse Macrophages

  • Park, Wansu
    • The Journal of Korean Medicine
    • /
    • v.33 no.4
    • /
    • pp.42-49
    • /
    • 2012
  • Objectives: The purpose of this study was to investigate effects of Red Ginseng-Ejung-tang Water Extract (ER) on cytokine production in RAW 264.7 mouse macrophages stimulated by lipopolysaccharide (LPS). Methods: Levels of various cytokines such as interleukin (IL)-6, IL-10, IL-2, IL-12p70, vascular endothelial growth factor (VEGF), monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)-2, keratinocyte-derived chemokine (KC), tumor necrosis factor (TNF)-alpha, granulocyte macrophage colony-stimulating factor (GM-CSF) were measured by high-throughput multiplex bead array cytokine assay based on xMAP (multi-analyte profiling beads) technology. Results: ER significantly decreased levels of IL-6, IL-10, IL-2, IL-12p70, VEGF, and MCP-1 for 24 hrs incubation at the concentrations of 25, 50, and $100{\mu}g/mL$ in LPS-induced RAW 264.7 cells (P < 0.05). But ER did not exert significant effects on production of MIP-2, KC, TNF-${\alpha}$, and GM-CSF in LPS-induced RAW 264.7 cells. Conclusions: These results suggest that ER has an anti-inflammatory property related with its inhibition of cytokine production in LPS-induced macrophages.

Simultaneous Determination of Three Compounds in Ejung Tang by HPLC-DAD and LC-ESI-MS (HPLC를 이용한 이중탕 중 3종 활성성분의 동시분석법 확립)

  • Lee, Bo-Hyoung;Ma, Jin-Yeul;Weon, Jin-Bae;Yang, Hye-Jin;Yun, Bo-Ra;Ma, Choong-Je
    • Korean Journal of Pharmacognosy
    • /
    • v.43 no.1
    • /
    • pp.10-15
    • /
    • 2012
  • An accurate and sensitive analysis method was established for simultaneous determination of three bioactive compounds (glycyrrhizin, 6-gingerol and ginsenoside Rg3) in the Ejung Tang with high-performance liquid chromatography (HPLC)-photodiode array detection (DAD)-electrospray ionization (ESI)-Mass spectrometry (MS). The optimizing chromatographic separations a were acquired by an $C_{18}$ column ($5{\mu}m$, $4.6I.D{\times}250mm$, SHISHEDO) using gradient elution with water comprising 0.1% TFA(trifluoroacetic acid) and acetonitrile at a performing temperature of $35^{\circ}C$. Flow rate was 1.0 ml/min. A detection UV wavelength set at 205 nm and 250 nm. The three compounds were identified by electrospray ionization mass spectrometry. All calibration curves indicated great linear regression within test ranges ($R^2>0.9997$). The established method provided acceptable precision and accuracy. The relative standard deviations (RSDs) of intra-day and inter-day were less than 2.00% and 3.00%, respectively. The recoveries were found to range from 94.49 to 101.10% for the three compounds analyzed. These results showed that this method was effective and reliable for quality control of Eiung-Tang.

Effect of White Ginseng-Ejung-tang Water Extract on Cytokine Production in LPS-induced RAW 264.7 Mouse Macrophages (Lipopolysaccharide로 유발된 마우스대식세포의 cytokine 생성증가에 대한 백삼이중탕 물추출물의 영향)

  • Park, Wan Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.27 no.6
    • /
    • pp.738-744
    • /
    • 2013
  • The purpose of this study is to investigate effects of White Ginseng-Ejung-tang water extract (EJ) on production of various cytokines such as interleukin (IL)-2, IL-5, IL-6, IL-10, IL-12p70, macrophage inflammatory protein (MIP)-2, vascular endothelial growth factor (VEGF), keratinocyte-derived chemokine(KC), tumor necrosis factor (TNF)-${\alpha}$, and granulocyte macrophage colony-stimulating factor (GM-CSF) in RAW 264.7 mouse macrophages stimulated by lipopolysaccharide (LPS). Levels of cytokines were measured by High-throughput multiplex bead array cytokine assay based on xMAP (multi-analyte profiling beads) technology. EJ significantly decreased levels of IL-2, IL-12p70, IL-5, MIP-2 for 24 h incubation at the concentrations of 25, 50, and 100 ${\mu}g/mL$ in LPS-induced RAW 264.7 (P < 0.05). EJ significantly decreased levels of IL-6 at the concentrations of 50 and 100 ${\mu}g/mL$ (P < 0.05). EJ significantly decreased levels of IL-10 and VEGF at the concentrations of 25 and 100 ${\mu}g/mL$ (P < 0.05). EJ significantly decreased levels of KC at the concentrations of 100 ${\mu}g/mL$ (P < 0.05). EJ did not show any significant effect on TNF-${\alpha}$ and GM-CSF production. These results suggest that EJ has anti-inflammtory property related with its inhibition of IL-2, IL-5, IL-6, IL-10, IL-12p70, MIP-2, VEGF, and KC production in LPS-induced macrophages.

Effects of Red Ginseng-Ejung-tang on Nitric Oxide and Hydrogen Peroxide Production in LPS-induced Mouse Macrophages RAW 264.7 (홍삼이중탕(紅蔘理中湯)이 LPS로 유발된 마우스 대식세포 RAW 264.7의 nitric oxide 및 hydrogen peroxide 생성에 미치는 영향)

  • Lee, Ji-Young;Park, Wan-Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.294-299
    • /
    • 2011
  • The purpose of this study is to investigate effects of Red Ginseng-Ejung-tang (RE) on nitric oxide (NO) and hydrogen peroxide production in RAW 264.7 mouse macrophages induced by lipopolysaccharide (LPS). Cell viability was measured by modified MTT assay. NO production was measured by Griess reagent assay. Hydrogen peroxide production was measured by dihydrorhodamine 123 (DHR) assay. RE did not show cell toxicity against RAW 264.7 for 24 hr incubation at the concentrations of 10, 25, 50, 100, and $200{\mu}g/mL$ in RAW 264.7. RE significantly inhibited NO production for 24 hr incubation at the concentrations of 10, 25, 50, and $100{\mu}g/mL$ in RAW 264.7 (P < 0.05). RE significantly inhibited the LPS-induced production of NO for 24 hr incubation at the concentrations of 10, 25, 50, and $100{\mu}g/mL$ in RAW 264.7 (P < 0.05). RE significantly inhibited the LPS-induced production of hydrogen peroxide for 16, 24, 40, 48, 64, and 72 hr incubation at the concentrations of 50, 100, and $200{\mu}g/mL$ in RAW 264.7 (P < 0.05). These results suggest that RE has anti-inflammatory property related with its inhibition of NO and hydrogen peroxide production in LPS-induced macrophages.