• 제목/요약/키워드: Ejector-diffuser system

검색결과 49건 처리시간 0.026초

화학레이저 구동용 이젝터 시스템 개발 (III) - 고출력 화학레이저용 실물 크기의 이젝터 시스템 개발 및 성능 검증 - (Development of an Ejector System for Operating of Chemical Lasers (III) - Development and Performance Validation of a Full-Scale Ejector System for High Power Chemical Lasers -)

  • 김세훈;진정근;권세진
    • 대한기계학회논문집B
    • /
    • 제29권1호
    • /
    • pp.9-15
    • /
    • 2005
  • From the geometric parameter study, an optimal ejector design procedure of pressure recovery system for chemical lasers was acquired. For given primary flow reservoir conditions, an up-scaled ejector was designed and manufactured. In the performance test, secondary mass flow rate of 100g/s air was entrained satisfying the design secondary pressure, $40{\sim}50torr$. Performance validation of a supersonic ejector system along with an investigation of effects of supersonic diffuser was conducted. Placement of the diffuser at the secondary inlet further reduced diffuser upstream pressure to 7torr. Lastly, the duplicate of apparatus (air 500g/s secondary mass flow rate each) was built and connected in parallel to assess proportionality behavior on a system to handle larger mass flow rate. Test and comparison of the parallel unit demonstrated the secondary mass flow rate was proportional to the number of individual units that were brought together maintaining the lasing pressure.

초음속 Chevron 이젝터 유동에 대한 수치해석적 연구 (Computational Study of Supersonic Chevron Ejector Flows)

  • ;김희동
    • 한국추진공학회지
    • /
    • 제17권6호
    • /
    • pp.89-96
    • /
    • 2013
  • 이젝터-디퓨저 시스템의 성능을 효과적으로 향상시키는 연구는 복잡성과 어려움을 고려하여 중요한 과제이다. 이 연구에서는, 성능 향상을 위해 이젝터-디퓨져 시스템의 이차유동 입구에 Chevron를 설치하여 재설계하였다. 이젝터 내부의 초음속 유동과 충격파를 모사하기 위해 Fluent를 사용하여 수치해석을 수행하였다. 주된 수치해석 결과로부터 Chevron은 이젝터 유동에 긍정적인 영향을 얻었다. 그리고 Chevron의 유무에 따라 이젝터 성능을 비교하였고, chevron의 최적 수는 성능 향상을 위해 설명하였다. 이젝터-디퓨져 시스템의 성능은 유인비, 압력회복 뿐만 아니라 전압손실 관점에서 분석하였다.

화학레이저 압력회복을 위한 축소형 이젝터의 성능변수 (Parametric Study of Subscale Ejector for Pressure Recovery of Chemical Lasers)

  • 김세훈;김형준;권세진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.135-138
    • /
    • 2002
  • High-speed ejection of burnt gases from the resonator cavity is essential for performance optimization of the chemical laser system. Additionally, to maintain the population of lasing species at a level for maximum optical power, the pressure within the cavity must be of order of 10 torr. In the present study, a small-scale ejector was designed and built for parametric study of its performance. High-pressure air was used as a motive gas. Measurements include schlieren visualization and pressure distribution trace near the ejector nozzle and along the diffuser downstream of the ejector. preliminary tests showed performance of the ejector is a function of parameters including mass flow rate and stagnation pressure of the motive gas, ejector nozzle area ratio, throat area of the diffuser downstream of the ejector.

  • PDF

Computational Study of the Axisymmetric, Supersonic Ejector-Diffuser Systems

  • Kim, Heuy-Dong;Lee, Young-Ki;Seo, Tae-Won;Raghunathan, Srinivasan
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.520-524
    • /
    • 2000
  • A ejector system is one of the fluid machinery, which has been mainly used as an exhaust pump or a vacuum pump. The ejector system has often been pointed out to have only a limited efficiency because it is driven by pure shear action and the mixing action between primary and secondary streams. In the present work, numerical simulations were conducted to investigate the effects of the geometry and the mass flow ratio of supersonic ejector-diffuser systems on their mixing performance. A fully implicit finite volume scheme was applied to solve the axisymmetric Navier-Stokes equations, and the standard ${\kappa}-{\varepsilon}$ turbulence model was used to close the governing equations. The flow fields of the supersonic ejector-diffuser systems were investigated by changing the ejector throat area ratio and the mass flow ratio. The existence of the second throat strongly affected the shock wave structure inside the mixing tube as well as the spreading of the under-expanded jet discharging from the primary nozzle, and served to enhance the mixing performance.

  • PDF

축소 팽창 디퓨저가 장착된 초음속 이젝터의 시동 특성 (The Starting Behaviour of a Supersonic Ejector Equipped with a Converging-Diverging Diffuser)

  • 박근홍;김세훈;진정근;권세진
    • 한국추진공학회지
    • /
    • 제9권2호
    • /
    • pp.70-77
    • /
    • 2005
  • 축소-팽창 디퓨저가 장착된 초음속 이젝터를 제작하여, 다양한 위치에서의 측정된 압력으로 부유동의 초음속 시동조건을 찾아내었다. 우선 부유동 흡입구의 크기의 영향을 알아내기 위하여 다양한 흡입구 직경으로 실험하였으며, 부유동의 초음속 시동은 흡입구 직경과 축소-팽창 디퓨저 직경의 비, d/D가 0.306 미만인 경우에만 일어났다. 이보다 큰 d/D에서는, 아음속 시동이 먼저 시작되고, 흡입구를 막으면서 주유동의 유입이 전 유동장을 채우게 되어 수직 충격파를 축소-팽창 디퓨저의 하류로 내려보내게 된다 이러한 상황에서 다시 흡입구를 열어도 히스테리시스의 영향으로 초음속 시동이 유지된다.

A Study of the Transient Flow Characteristics of a Vacuum Ejector-Diffuser System.

  • ;김희동
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2769-2774
    • /
    • 2007
  • In vacuum ejector-diffuser systems where a finite volume secondary chamber is used, the secondary jet exhibits transient characteristics during start-up. A steady state is achieved after some time in which mass entrainment prevails indefinitely inside the ejector, though there is no flow from the secondary chamber. An attempt is made in this work to study the infinite entrainment of secondary jet into the primary jet from a finite secondary chamber, with the help of a computational fluid dynamics method. The present study is also intended to identify the operating range of vacuum ejector-diffuser systems where the steady flow assumption can be applied without uncertainty. The results obtained show that the only condition in which an infinite mass entrainment is possible is the generation of a re-circulation zone near the primary nozzle exit. The flow in the secondary chamber attains a state of dynamic equilibrium at this point. Steady flow assumption is valid only after this point.

  • PDF

연속발진 고출력 화학레이저 구동용 이젝터 시스템 연구 (Study of Ejector System for cw High Power Chemical Lasers Operating)

  • 김세훈;진정근;권세진
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1715-1719
    • /
    • 2004
  • An in-house supersonic ejector was designed to ensure low pressure and high speed scavenging of resonating cavity of chemical lasers. For given primary flow condition, 100g/s secondary mass flow rate was observed at the design pressure. Performance validation of a supersonic ejector system along with an investigation of effects of supersonic diffuser was conducted. Placement of diffuser at the secondary inlet further reduced diffuser upstream pressure to 1/4-1/5 relieving the local to the primary supply unit. In order to increase the secondary flow, we put two ejectors capable of removing 50g/s each of secondary flows together to deal with higher mass flow. Test of the parallel unit demonstrated the secondary flow rate was proportional to the numbers of individual units that were brought together. Additionally, flow calculations with a commercial code were carried out in every case of experiment and compared with results.

  • PDF

연료전지 수소재순환 이젝터 시스템에 관한 수치해석적 연구 (Numerical Study on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle)

  • 남궁혁준;문종훈;장석영;홍창욱;이경훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.156-160
    • /
    • 2007
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some sonic and subsonic ejectors with the function of changing nozzle position were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

연료전지 수소재순환 이젝터 성능 해석 (Performance Analysis on a Hydrogen Recirculation Ejector for Fuel Cell Vehicle)

  • 남궁혁준;문종훈;장석영;홍창욱;이경훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.256-259
    • /
    • 2008
  • Ejector system is a device to transport a low-pressure secondary flow by using a high-pressure primary flow. Ejector system is, in general, composed of a primary nozzle, a mixing section, a casing part for suction of secondary flow and a diffuser. It can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejector system is simple in construction and has no moving parts, so it can not only compress and transport a massive capacity of fluid without trouble, but also has little need for maintenance. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an applicable model and operating conditions for an ejector in the condition of sonic and subsonic, which can be extended to the hydrogen fuel cell vehicle. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Optimization technique and numerical simulation was adopted for an optimal geometry design and satisfying the required performance at design point of ejector for hydrogen recirculation. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF

공기구동 기체이젝터의 성능특성에 관한 연구 (A Study on the Performance Characteristics of Air Driven Gas Ejector)

  • 홍영표;윤두호;김용모;윤석훈
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권1호
    • /
    • pp.51-59
    • /
    • 1994
  • The gas jet pumps serve to preduce a vacuum or can be used as gas jet compressors. These are operated on the same principle as a steam jet vacuum pump : in the driving nozzle the pressure energy of the motive medium is converted into the kinetic energy. In the diffuser the driving jet mixes with the suction medium and the kinetic energy is reconverted into the pressure enegy. The application fields of gas jet ejectors are the evacuation of siphoning installations, the elevation of liquids, the production of vacuum filters, the vacuum supporting airlift system, the evacuation of the suction line of centrifugal pumps and the ventilation of the dangerous gases to the atmosphere. The performance of gas jet ejector is influenced strongly to velocity coefficient of motive nozzle, the distance between the motive outlet to the diffuser inlet and the dimensions of diffuser. This study is performed for the computer aided design of gas jet ejectors in future. Through the present experiments, it is known that the velocity coefficient of the motive air nozzle ranges from 0.91 to 0.95 and the maximum efficiency of gas jet ejector is 24.6%.

  • PDF