• 제목/요약/키워드: Ejection force

검색결과 42건 처리시간 0.021초

Evaluation of Physical Properties as Magnesium Stearate Blendedin Hydrophilic Matrix Tablets

  • Choi, Du-Hyung;Jung, Youn-Jung;Wang, Hun-Sik;Yoon, Jeong-Hyun;Jeong, Seong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권2호
    • /
    • pp.83-90
    • /
    • 2011
  • Main objectives of this study were to investigate the effects of a lubricant, magnesium stearate, as blended in a hydrophilic matrix tablet and to identify significant factors using a tablet ejection force and a swelling property. The characteristics of tablet ejection were evaluated with three different compression forces (30, 40, and 60 MPa) and two controlled factors, amount of magnesium stearate and its mixing time. A hydrophilic model drug (terazosin HCl dihydrate) was regarded as a default factor. Tablet swelling was also evaluated. The optimal amount of PEG compared to PEO was set to be 88.50% w/w. As the amount of magnesium stearate was varied from 0.79% to 2.20% w/w, the amount of PEO and PEG was adjusted to meet the tablet's total weight while maintaining the ratio between the two excipients constant. As the mixing time of magnesium stearate was increased, the tablet ejection force and the swelling property were decreased. As the amount of magnesium stearate was increased, the tablet ejection force and the swelling property were decreased since the increased mixing time and the amount of magnesium stearate induced hydrophobic properties of the matrix tablet more effectively. The ejection force of the tablet increased as a result of increase in the compression force, which means that the breaking of tablet/die-wall adhesion energy was also increased when the compression energy was increased. The results gavea valuable guide how to choose suitable amount of the lubricant with processing conditions for the development of hydrophilic matrix formulations.

활공탄의 안전분리 해석을 위한 지상투하시험 (Ground Ejection Tests for the Safe Separation Analysis of a Gliding Bomb)

  • 이기두;이인원;박영근;백승욱;정나현;정상준
    • 한국항공우주학회지
    • /
    • 제41권6호
    • /
    • pp.502-508
    • /
    • 2013
  • 새로이 개발된 유도키트를 장착한 모의 활공탄에 대하여 지상투하시험을 수행하였다. 사출형 분리장치의 카트리지와 오리피스 조합에 따른 사출력을 측정한 결과, 오리피스 직경이 클수록 사출력이 크게 작용하였으며, 투하된 후 날개 전개장치를 비롯하여 탄의 내부에 탑재된 시험 장치들의 정상 작동을 확인하였다. 또한 영상자료로부터 활공탄의 피치각은 전방과 후방의 사출력 분포 즉 카트리지와 오리피스 조합에 따라 증가 또는 감소하는 것으로 분석되었다.

고속카메라를 이용한 Drop-on-demand 방식의 정전 액적 토출 분석 (Analysis of Electrostatic Ejection of Liquid Droplets in Manner of Drop-on-demand Using High-speed Camera)

  • 김용재;최재용;손상욱;김영민;이석한;변도영;고한서
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.128-133
    • /
    • 2007
  • An electrostatic inkjet head can be used for manufacturing processes of large display systems and printed circuit boards (PCB) as well as inkjet printers because an electrostatic field provides an external force which can be manipulated to control sizes of droplets. The existing printing methods such as thermal bubble and piezo inkjet heads have shown difficulties to control the ejection of the droplets for printing applications. Thus, the new inkjet head has been proposed using the electrostatic force. A numerical analysis has been performed to calculate the intensity of the electrostatic field using the Maxwell's equation. Also, experiments have been carried out to investigate the droplet movement using a downward capillary with outside diameter of $500{\mu}m$. Gravity, surface tension, and electrostatic force have been analyzed with high voltages for a drop-on-demand ejection. It has been observed that the droplet size decreases and the frequency of the droplet formation and the velocity of the droplet ejection increase with increasing the intensity of the electrostatic field using high-speed camera.

  • PDF

정전기력에 의한 액적 토출 분석 (Analysis of Electrostatic Ejection for Liquid Droplets)

  • 김용재;이석한;변도영;손상욱;정대원;고한서
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.505-508
    • /
    • 2006
  • An electrostatic ink jet head can be used for manufacturing processes of large display systems and printed circuit boards (PCB) as well as inkjet printers because an electrostatic field provides an external force which can be manipulated to control sizes of droplets. The existing printing methods such as thermal bubble and piezo inkjet heads have shown difficulties to control the ejection of the droplets for printing applications. Thus, the new inkjet head using the electrostatic force has been proposed in this study. In order to prove the theory of the developed electrostatic ink jet head, the applicable and basic theory has been studied using distilled water and water with sodium dodecyl surfate (SDS). Also, a numerical analysis has been performed to calculate the intensity of the electrostatic field using the Maxwell's equation. Furthermore, experiments have been carried out using a downward glass capillary with outside diameter of $500{\mu}m$. The gravity, surface tension, and electrostatic force have been analyzed with high voltages of 0 to 5kV. It has been observed that the droplet size decreases and the frequency of the droplet formation and the velocity of the droplet ejection increase with increasing the intensity of the electrostatic field. The results of the experiments have shown good agreement with those of numerical analysis.

  • PDF

항공기 장착 무장의 투하 안정성 검증을 위한 지상무장분리시험 (Ground Ejection Tests to verify the Safe Separation of an Aircraft Mounted Store)

  • 이종홍;최석민;이민형;이철;정재원
    • 한국항행학회논문지
    • /
    • 제22권2호
    • /
    • pp.70-75
    • /
    • 2018
  • 항공기에 장착하는 무장은 실제 항공기에 장착하기 전에 안전 분리가 이루어졌음을 검증하기 위해 지상에서 무장분리시험을 실시해야 한다. 본 연구에서는 더미유도탄으로 지상에서투하 안정성을 검증하기 위한 지상무장분리시험을 실시하였다. 지상무장분리시험의 필수장비인 무장분리장치는 공압으로 동작하며 압력이 크고, 오리피스 직경이 클수록 유도탄을 밀어내는 사출력이 크게 발생한다. 무장분리장치의 봄베 압력과 오리피스 직경을 변경하여 더미유도탄의 투하 움직임을 고속카메라로 계측하였고 투하변위, 투하속도를 분석하였다. 실제 비행하는 항공기에서 무장 투하 해석시 기초 데이터를 제공할 수 있고, 추후 개발되는 항공기 무장의 지상무장분리시험 수행시 유용할 것으로 생각한다.

2,000lb급 장착물의 분리분석을 위한 지상투하시험 (Static Ejection Test for Separation Analysis of 2,000lb-Class Store)

  • 신병준;조영희;김민수
    • 한국군사과학기술학회지
    • /
    • 제26권4호
    • /
    • pp.344-351
    • /
    • 2023
  • Static ejection tests were conducted using the 2,000lb-Class Store to provide ejector model for the store separation simulation. In this study, static ejection test device for 2,000lb-class store was constructed and reaction force applied to store was measured over time. In addition, the trajectories of the ejected store were obtained using photogrammetry and compared with the simulations using developed ejector model. The results of the static ejection test were analyzed to determine the cartridge-orifice combination to be used for store separation. Flight tests were performed by applying the analysis results and verified that the store was safely separated from the aircraft.

미세 패턴 사출 성형에서의 이형력에 대한 성형 조건의 영향 평가 (Effect of Molding Conditions on Demolding Force During Injection Molding of Parts with Micro-features)

  • 박시환;유영은;이우일
    • 한국생산제조학회지
    • /
    • 제23권2호
    • /
    • pp.127-132
    • /
    • 2014
  • Micro/nano-injection molding is one of the main processing techniques for polymer micro-fabrication. Most of the difficulties encountered in polymer micro-molding are caused by the demolding, rather than the filling of molds. Therefore, studying the demolding process is vitally important for manufacturing polymer replicas. The most important parameters are the thermal stress, friction and adhesion forces, and mechanical strength of the resist. In this research, we determinedthe effects of the processing conditions on the ejection force for cases involving two common thermoplastic polymers. The results showed that the processing conditions noticeably influenced the ejection force.

탄소나노튜브를 포함한 마이크로 액적의 정전기적 토출 (Electrostatic Ejection of Micro-droplets Containing Carbon Nanotubes)

  • 김용재;이석한;고한서;변도영;한상준;양지혜;백승현
    • 대한기계학회논문집B
    • /
    • 제30권1호
    • /
    • pp.82-86
    • /
    • 2006
  • Carbon nanotubes have attracted much attention as future mechanical and electronic materials. However, manipulating techniques are not well developed yet. Here we propose to use electrostatic drop-on-demand devices to eject micro-droplets containing micelle-suspended single-walled carbon nanotubes. A simple electrostatic force analysis and photographic studies of droplet ejection process are presented. The analytical analysis shows that semiconducting species have higher electrostatic force density. However, enrichment of specific electronic types is not clear at large size droplets produced in this study. A micro-scale jetting device is being produced to prove the suggested behavior.

압전 액츄에이터의 메니스커스 제어를 통한 온 디멘드(On-demand) 전기 수력학 프린팅 (On-demand electrohydrodynamic printing with meniscus controls by a piezoelectric actuator)

  • 김영재;김도형;황정호;김용준
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.351-352
    • /
    • 2009
  • On-demand ejection of ultra-fine droplets that uses both electrohydrodynamic (EHD) force and mechanical actuation is presented. The liquid meniscus was controlled by a piezoelectric actuator and droplets were ejected by EHD force. Through these effects, it was possible to obtain a high operational jetting frequency of 5kHz with a short delay-time (about 50 us) when compared with existing on-demand EHD jetting methods, such as the pulsating jet mode (3-10 msec) and the pulsed-voltage cone-jet mode(3.6 msec). Also, we obtained ultra-fine droplets at a volume that was at the femto-liter level simultaneously. The jetting characteristics were examined for both hydrophobicity and hydrophilicity of the surface of a capillary.

  • PDF

Cardiac Response to Head-Out Water Immersion in Man

  • Choi, Jang-Kyu;Park, Won-Kun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권3호
    • /
    • pp.253-261
    • /
    • 2000
  • Head-out water immersion induces marked increase in the cardiac stroke volume. The present study was undertaken to characterize the stroke volume change by analyzing the aortic blood flow and left ventricular systolic time intervals. Ten men rested on a siting position in the air and in the water at $34.5^{circ}C$ for 30 min each. Their stroke volume, heart rate, ventricular systolic time intervals, and aortic blood flow indices were assessed by impedance cardiography. During immersion, the stroke volume increased 56%, with a slight (4%) decrease in heart rate, thus cardiac output increased ${\sim}50%.$ The slight increase in R-R interval was due to an equivalent increase in the systolic and diastolic time intervals. The ventricular ejection time was 20% increased, and this was mainly due to a decrease in pre-ejection period (28%). The mean arterial pressure increased 5 mmHg, indicating that the cardiac afterload was slightly elevated by immersion. The left ventricular end-diastolic volume index increased 24%, indicating that the cardiac preload was markedly elevated during immersion. The mean velocity and the indices of peak velocity and peak acceleration of aortic blood flow were all increased by ${\sim}30%,$ indicating that the left ventricular contractile force was enhanced by immersion. These results suggest that the increase in stroke volume during immersion is characterized by an increase in ventricular ejection time and aortic blood flow velocity, which may be primarily attributed to the increased cardiac preload and the muscle length-dependent increase in myocardial contractile force.

  • PDF