• Title/Summary/Keyword: Eigenvector matrix

Search Result 94, Processing Time 0.021 seconds

Coherent Multiple Target Angle-Tracking Algorithm (코히어런트 다중 표적 방위 추적 알고리즘)

  • Kim Jin-Seok;Kim Hyun-Sik;Park Myung-Ho;Nam Ki-Gon;Hwang Soo-Bok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.230-237
    • /
    • 2005
  • The angle-tracking of maneuvering targets is required to the state estimation and classification of targets in underwater acoustic systems. The Problem of angle-tracking multiple closed and crossing targets has been studied by various authors. Sword et al. Proposed a multiple target an91e-tracking algorithm using angular innovations of the targets during a sampling Period are estimated in the least square sense using the most recent estimate of the sensor output covariance matrix. This algorithm has attractive features of simple structure and avoidance of data association problem. Ryu et al. recently Proposed an effective multiple target angle-tracking algorithm which can obtain the angular innovations of the targets from a signal subspace instead of the sensor output covariance matrix. Hwang et al. improved the computational performance of a multiple target angle-tracking algorithm based on the fact that the steering vector and the noise subspace are orthogonal. These algorithms. however. are ineffective when a subset of the incident sources are coherent. In this Paper, we proposed a new multiple target angle-tracking algorithm for coherent and incoherent sources. The proposed algorithm uses the relationship between source steering vectors and the signal eigenvectors which are multiplied noise covariance matrix. The computer simulation results demonstrate the improved Performance of the Proposed algorithm.

Estimating Optimal Potential Surface for Spatial Expansion of Built-up Area by Formulating WSM-AHP Method (WSM-AHP법의 정식화를 통한 주거지 확산 지역의 최적 잠재력 표면의 추정)

  • Kim, Dae-Sik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.50 no.3
    • /
    • pp.91-104
    • /
    • 2008
  • This study developed the WSM (weighted scenario method)-AHP method that can optimize the weighting value for multi-criteria to make GIS grid-based potential surface. The potential surface has been used to simulate urban expansion using distributed cellular automata model and to generate land-use planning as basic data. This study formulated the WSM-AHP method in mathematically and applied to test region, Suwon city, which located on south area from Seoul. WSM-AHP method generates potential map for each pair of weighting value for all criteria, which one criterion is weighted with high weighting value and the others use low weighting value, considering that the summation for all criteria weighting values should be "1". The potential change rate to the step of weighted scenario for weighting value of criteria is standardized like AHP intensity matrix in this study. From the standard potential change rate, WSM-AHP intensity matrix is completed, and then the optimal weighting value is calculated from the maximum eigenvector of the WSM-AHP matrix, according to the new WSM-AHP method developed in this study. The applied results of new method showed that the optimal weighting value from WSM-AHP is more resonable than the general AHP specialists' evaluation for weighting value. The another new finding of this study is to suggest the deterministic approach to optimize the weighting value for the distributed CA model, which is used to find new city area and to generate rational land-use planning.

Simple principal component analysis using Lasso (라소를 이용한 간편한 주성분분석)

  • Park, Cheolyong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.3
    • /
    • pp.533-541
    • /
    • 2013
  • In this study, a simple principal component analysis using Lasso is proposed. This method consists of two steps. The first step is to compute principal components by the principal component analysis. The second step is to regress each principal component on the original data matrix by Lasso regression method. Each of new principal components is computed as the linear combination of original data matrix using the scaled estimated Lasso regression coefficient as the coefficients of the combination. This method leads to easily interpretable principal components with more 0 coefficients by the properties of Lasso regression models. This is because the estimator of the regression of each principal component on the original data matrix is the corresponding eigenvector. This method is applied to real and simulated data sets with the help of an R package for Lasso regression and its usefulness is demonstrated.

Performance Analysis of the Array Shape Estimation Methods Based on the Nearfield Signal Modeling (근거리 신호 모델링을 기반으로 한 어레이 형상 추정 기법들의 성능 분석)

  • Park, Hee-Young;Lee, Chung-Yong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.5
    • /
    • pp.221-228
    • /
    • 2008
  • To estimate array shape with reference sources in SONAR systems, nearfield signal modeling is required for the reference sources near a towed array. Array shape estimation method based on the nearfield signal modeling generally exploits the spatial covariance matrix of the received reference sources. Among those method, nearfield eigenvector method uses the eigenvector corresponding to the maximum eigenvalue as a steering vector of the reference source. In this paper, we propose a simplified subspace fitting method based on the nearfield signal modeling with spherical wave modeling. Furthermore, we analyze performance of the array shape estimation methods based on the nearfield signal modeling for various environments. The results of the numerical experiments indicate that the simplified subspace fitting method and the nearfield eigenvector method with single reference source shows almost similar performance. Furthermore, the simplified subspace fitting method with 2 reference sources consistently estimates the shape of the array regardless of the incident angle of the reference sources, whereas the nearfield eigenvector method cannot apply for the case of 2 reference sources.

Estimable functions of fixed-effects model by projections (사영에 의한 모수모형의 추정가능함수)

  • Choi, Jae-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.3
    • /
    • pp.487-494
    • /
    • 2012
  • This paper discusses a method for getting a basis set of estimable functions of model parameters in a two-way fixed effects model. Since the fixed effects model has more parameters than those that can be estimated, model parameters are not estimable. So it is not possible to make inferences for nonestimable functions of parameters. When the assumed model of matrix notation is reparameterized by the estimable functions in a basis set, it also discusses how to use projections for the estimation of estimable functions.

Matched Field Source Localization and Interference Suppression Using Mode Space Estimation (정합장 기반 표적 위치추정 시 모드공간 분석을 통한 간섭 신호 제거 기법)

  • Kim, Kyung-Seop;Seong, Woo-Jae;Pyo, Sang-Woo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.40-46
    • /
    • 2008
  • Weak target detection and localization in the presence of loud surface ship noise is a critical problem for matched field processing (MFP) in shallow water. For stationary sources, each signal component of received signal can be separated and interference can be suppressed using eigen space analysis schemes. However, source motion, in realistic cases, causes spreading of signal energies in their subspace. In this case, eigenvalues of target and interfere signal components are mixed and hard to be separated with usual phone space eigenvector decomposition (EVD) approaches. Our technique is based on mode space and utilizes the difference in their physical characteristics of surface and submerged sources. Performing EVD for modal cross spectral density matrix, interference components in the mode amplitude subspace can be classified and eliminated. This technique is demonstrated with synthetic data, and results are discussed.

Multivariate Classification of Choson Coins (다변수 분석법에 의한 조선시대 동전의 분류연구)

  • Lee, Chang-Keun;Kang, Hyung-Tai;Goh, Sung-Hee
    • 보존과학연구
    • /
    • s.8
    • /
    • pp.1-12
    • /
    • 1987
  • Fifty ancient Korean coins originated in Choson dynasty have been determined for 9 elements such as Sn, Fe, As, Ag, Co, Sb, Ir, Ru and Ni by instrumental neutron activation analysis and for 3 elements such as Cu, Pb, and Zn by atomicalsorption spectrometry. Bronze coins originated in early days of the dynasty contain as major constituents Cu, Pb and Sn approximately in the ratio 90 : 4 : 3, where as, those in latter days contain in the ratio 7 : 2 : 0. Brass coins which had begun in 17century contain as major constituents Cu, Zn and Pb approximately in the ratio 7 : 1: 1. The multivariate date have been analyzed for the relation among elemental contents through the variance-covariance matrix. The data have been fur theranalyzed by a principal component mapping method. As the results training set of 8class have been chosen, based on the spread of sample points in an eigenvector plotand archaeolgical data such as age and the office of minting.

  • PDF

Improved Algebraic Method for Computing Eigenpair Sensitivities of Damped Systems (감쇠 시스템의 고유진동수와 모드의 민감도를 계산하기 위한 대수적 방법의 개선)

  • 조홍기;박선규;이인원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.277-285
    • /
    • 2000
  • This paper presents a very simple procedure for determining the sensitivities of the eigenpairs of damped vibratory system with distinct eigenvalues. The eigenpairs derivatives can be obtained by solving algebraic equation with a symmetric coefficient matrix whose order is (n+1)×(n+1), where n is the number of degree of freedom the method is an improvement of recent work by I. W. Lee, D. O. Kim and G. H. Junng; the key idea is that the eigenvalue derivatives and the eigenvector derivatives are obtained at once via only one algebraic equation, instead of using two equations separately as like in Lee and Jung's method Of course, the method preserves the advantages of Lee and Jung's method.

  • PDF

Image quality enhancement using signal subspace method (신호 부공간 기법을 이용한 영상화질 향상)

  • Lee, Ki-Seung;Doh, Won;Youn, Dae-Hee
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.11
    • /
    • pp.72-82
    • /
    • 1996
  • In this paper, newly developed algorithm for enhancing images corrupted by white gaussian noise is proposed. In the method proposed here, image is subdivided into a number of subblocks, and each block is separated into cimponents corresponding to signal and noise subspaces, respectively through the signal subspace method. A clean signal is then estimated form the signal subspace by the adaptive wiener filtering. The decomposition of noisy signal into noise and signal subspaces in is implemented by eigendecomposition of covariance matrix for noisy image, and by performing blockwise KLT (karhunen loeve transformation) using eigenvector. To reduce the perceptual noise level and distortion, wiener filtering is implementd by adaptively adjusting noise level according to activity characteristics of given block. Simulation results show the effectiveness of proposed method. In particular, edge bluring effects are reduced compared to the previous methods.

  • PDF

A NEW UNDERSTANDING OF THE QR METHOD

  • Min, Cho-Hong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.1
    • /
    • pp.29-34
    • /
    • 2010
  • The QR method is one of the most common methods for calculating the eigenvalues of a square matrix, however its understanding would require complicated and sophisticated mathematical logics. In this article, we present a simple way to understand QR method only with a minimal mathematical knowledge. A deflation technique is introduced, and its combination with the power iteration leads to extracting all the eigenvectors. The orthogonal iteration is then shown to be compatible with the combination of deflation and power iteration. The connection of QR method to orthogonal iteration is then briefly reviewed. Our presentation is unique and easy to understand among many accounts for the QR method by introducing the orthogonal iteration in terms of deflation and power iteration.