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ABSTRACT. The QR method is one of the most common methods for calculating the eigenval-
ues of a square matrix, however its understanding would require complicated and sophisticated
mathematical logics. In this article, we present a simple way to understand QR method only
with a minimal mathematical knowledge. A deflation technique is introduced, and its combina-
tion with the power iteration leads to extracting all the eigenvectors. The orthogonal iteration
is then shown to be compatible with the combination of deflation and power iteration. The
connection of QR method to orthogonal iteration is then briefly reviewed. Our presentation is
unique and easy to understand among many accounts for the QR method by introducing the
orthogonal iteration in terms of deflation and power iteration.

1. INTRODUCTION

Since its inception by Francis [4, 5] and Kublanovskaya [8], the QR method has been the
most widely used and the most popular method for calculating the eigenvalues of a full matrix.
It has been generalized to wider range of eigenvalue problems; QZ method, one of its variants,
solves generalized eigenvalue problem Ax = λBx [7], and a generalization of the QR method
called GR method has been researched by Watkins et al [11]. For each specific application, the
method has been tuned and upgraded; the restarted QR method is for comrade and fellow ma-
trices [3], and the QR method with a balance technique is for finding the roots of polynomials
[1].

Though its importance cannot be overstated, the QR method is normally deferred to graduate
course, or would be just presented without enough explanation why it works. The enigma stems
from the fact that the convergence proof is not trivial at all [6]. Even presenting a simple way
to understand the QR method has been a research topic [10, 2]. The most accounts take the
approach of explaining the orthogonal iteration and its connection to QR method [9, 6, 10],
and so does this article. But our presentation is different in explaining the orthogonal iteration
as successive application of the power iteration to deflated matrices. This article introduces a
simple way to understand the QR method only with a minimal knoledge of mathematics.
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2. POWER ITERATION AND DEFLATED MATRIX

Throughout this paper, we assume a matrix A ∈ Cn×n to have distinct eigenvalues λ1, λ2,
· · · , λn with their associated eigenvectors x1, x2, · · · , xn. The eigenvalues are numbered in
decreasing order, |λ1| > |λ2| > · · · > |λn| > 0.

Theorem 2.1. (Power Iteration) Assume that v0 in algorithm 1 is chosen randomly enough to
have nonzero component of eigenvector x1, then the sequence vk satisfies

lim
k→∞

dist
(
vk, span(x1)

)
= 0.

Proof. By the assumption, v0 = a1x1 + a2x2 + · · ·+ anxn with a1 6= 0. vk in algorithm 1 is
parallel to Avk−1, whenever k ≥ 1. Repeating this argument leads to the fact that vk is parallel
to Akv0, and vk = Akv0/

∥∥Akv0
∥∥.

Akv0 = a1λ
k
1x1 + a2λ

k
2x2 + · · ·+ anλk

nxn

lim
k→∞

vk = lim
k→∞

a1λ
k
1x1 + a2λ

k
2x2 + · · ·+ anλk

nxn∥∥a1λk
1x1 + a2λk

2x2 + · · ·+ anλk
nxn

∥∥

= lim
k→∞

(
λ1
‖λ1‖

)k
x1 + a2

a1

(
λ2
‖λ1‖

)k
x2 + · · ·+ an

a1

(
λn
‖λ1‖

)k
xn∥∥∥∥x1 + a2

a1

(
λ2
λ1

)k
x2 + · · ·+ an

a1

(
λn
λ1

)k
xn

∥∥∥∥

= lim
k→∞

(
λ1

‖λ1‖
)k x1

‖x1‖
As k →∞, vk belongs to the span(x1), thus limk→∞ dist

(
vk, span(x1)

)
= 0 . ¤

Algorithm 1 Power iteration : v = power(A)

Input : an n× n matrix A
v0 : randomly chosen
for k = 0, 1, 2, · · · do

vk+1 = Avk

‖Avk‖
end for
Output : v = vk for some large k

The above theorem shows that the sequence of power iteration will eventually belong to
span(x1). Let us set a unit eigenvector v1 ∈ span (x1) as a vector vk in the power iteration
applied to A for some large k. The next theorem suggests a way to calculate the next largest
one.
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Theorem 2.2. (Deflated Matrix) Let v1 be a unit eigenvector of A associated with λ1, then the
matrix

(
I − v1v

T
1

)
A, called the deflated matrix of A with v1, has eigenvalues 0, λ2, · · · , λn

with corresponding eigenvectors v1,
(
I − v1v

T
1

)
x2, · · · , (

I − v1v
T
1

)
xn.

Proof. Since
(
I − v1v

T
1

)
Av1 = λ1v1 − λ1v1 = 0, 0 is an eigenvalue of the deflated matrix

with eigenvector v1. The deflated matrix annihilates the v1 component, hence

(
I − v1v

T
1

)
A

(
I − v1v

T
1

)
xj =

(
I − v1v

T
1

)
Axj

= λj

(
I − v1v

T
1

)
xj .

Note that whenever j 6= 1, xj − (v1 · xj) v1 cannot be a zero vector, otherwise it contradicts
the linear independence of the eigenvectors belonging two different eigenvalues. ¤
Corollary 2.3. Let the power iteration, denoted by

(
vk
2

)
, operate on the deflated matrix(

I − v1v
T
1

)
A, then

lim
k→∞

dist
(
vk
2 , span (x1, x2)

)
= 0.

Proof. The largest eigenvalue of the deflated matrix is λ2 and its associated eigenvector is x2−
(v1 · x2) v1. From theorem 2.1, as k → ∞, vk

2 belongs to the space span (x2 − (v1 · x2) v1)
which is the subspace of span (x1, x2). ¤

Power iteration obtains a unit eigenvector of the eigenvalue with the largest modulus. The
deflation annihilates the largest eigenvalue, and exposes the next largest one for the power
iteration to pick up. In this way, we set a unit vector v2 ∈ span (x1, x2) as vk in the power
iteration applied to

(
I − v1v

T
1

)
A for some large k. We repeatedly apply the power iteration

on the deflated matrix to obtain unit length vectors v1, v2, · · · , vn with the properties listed in
Algorithm 2.

Algorithm 2 Successive power iterations on deflated matrices
Input : an n× n matrix A
v1 = power (A)
v2 = power

((
I − v1v

T
1

)
A

)
...
vn = power

((
I − vn−1v

T
n−1

) · · · (I − v1v
T
1

)
A

)
Output : v1, v2, · · · , vn

Theorem 2.4. The vectors v1, v2, · · · , vn in Algorithm 2 satisfy

v1 ∈ span (x1)
v2 ∈ span (x1, x2)

...
vn ∈ span (x1, x2, · · · , xn)

.
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Proof. Let Ai =
(
I − viv

T
i

) · · · (I − v1v
T
1

)
A be the ith deflated matrix in Algorithm 2. By

Theorem 2.2, each deflation annihilates the largest eigenvalue of Ai and adds a scalar multiple
of the associated eigenvector to all the other eigenvectors. Thus the largest eigenvalue in mod-
ulus of Ai is λi+1, and its associated eigenvector belongs to span (v1, · · · , vi, xi+1), for each
i = 0, 1, · · · , n−1. For the matrix Ai, vi+1 is an eigenvector associated with the eigenvalue of
the largest modulus, and vi+1 ∈ span (v1, · · · , vi, xi+1) for each i. By mathematical induction
on i, it is clear that vi+1 ∈ span (x1, · · · , xi, xi+1) for each i. ¤

3. ORTHOGONAL ITERATION

Algorithm 2 sequentially computes all the eigenvectors. Even though the power iteration for
vi is not completed, the temporary value should serve as a good approximation, and Algorithm
3 combines all the power iterations in one iteration by using the approximations vk

1 , · · · , vk
n for

v1, · · · , vn, respectively. The two algorithms are just two formulations of the successive power
iterations on deflated matrices. Practically, Algorithm 3 is more efficient than Algorithm 2 in
a sense that the former can propose a good approximation for the full eigenvector system in a
meantime of the iteration, while the latter cannot.

Algorithm 3 Combined power iterations on recursively deflated matrices

for k = 0, 1, 2, · · · do

vk+1
1 = Avk

1 , vk+1
1 = vk+1

1 /
∥∥∥vk+1

1

∥∥∥
vk+1
2 =

(
I − vk+1

1

(
vk+1
1

)T
)

Avk
1 , vk+1

2 = vk+1
2 /

∥∥∥vk+1
2

∥∥∥
...

vk+1
n =

(
I − vk+1

n−1

(
vk+1
n−1

)T
)
· · ·

(
I − vk+1

1

(
vk+1
1

)T
)

Avk
n , vk+1

n = vk+1
n /

∥∥vk+1
n

∥∥

end for

Note that the routine inside Algorithm 3 is nothing but the QR factorization that obtains
the orthonormal basis vk+1

1 , · · · , vk+1
n from the basis Avk

1 , · · · , Avk
n. Writing the vectors in

columns, V k =
[
vk
1 , · · · , vk

n

]
, Algorithm 4, called orthogonal iteration, is hence a simple

restatement of Algorithm 3.

Algorithm 4 Orthogonal Iteration

for k = 0, 1, 2, · · · do
AV k = V k+1Rk+1: QR factorization of the matrix AV k

end for
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Theorem 3.1. Let
(
V k

)
k∈N be the sequence in the orthogonal iteration, then

• limk→∞ span
(
vk
1 , · · · , vk

j

)
= span (x1, · · · , xj) for j = 1, 2, · · · , n

• limk→∞ vk
i ·Avk

j = 0 if i > j.

Proof. The orthogonal iteration is an implementation of the successive application of the power
iteration on the deflated matrices. By theorem 2.4, limk→∞ dist

(
vk
j , span (x1, · · · , xj)

)
for

each j, and the first argument follows.
As k → ∞, vk

j belongs to span (x1, · · · , xj), and Avk
j belongs to the same space, since

the eigenvectors are invariant. By the first argument, Avk
j belongs to span

(
vk
1 , · · · , vk

j

)

when k → ∞. In the QR factorization, vk
i is orthogonal to vk

j whenever i > j, and vk
i ⊥

span
(
vk
1 , · · · , vk

j

)
. Therefore limk→∞ vk

i ·Avk
j = 0 whenever i > j. ¤

4. QR METHOD

The previous section reveals the relation between the column vectors of the orthogonal itera-
tion and the eigenvectors. To retrieve the eigenvalues of A, let us set Ak =

(
V k

)T
AV k. Then

Theorem 3.1 states that Ak becomes upper triangular as k → ∞. Since Ak is similar to A,
the eigenvalues of A should appear in the diagonal of the upper triangular matrix. Thus when
Ak =

(
V k

)T
AV k is inserted in the orthogonal iteration, the eigenvalues can be obtained.

From AV k = V k+1Rk+1,

Ak =
(
V k

)T
AV k =

(
V k

)T
V k+1Rk+1

Ak+1 =
(
V k+1

)T
AV k+1 = Rk+1

(
V k

)T
V k+1

.

Since V k and V k+1 are orthogonal matrices,
(
V k

)T
V k+1 is also orthogonal. Therefore the

above equations can be simply written as

Ak = Qk+1Rk+1

Ak+1 = Rk+1Qk+1,

where Ak = Qk+1Rk+1 is the QR factorization of Ak. The above recursive formula shows
that the sequence Ak can be generated detached from the orthogonal iteration. Algorithm 5,
called QR method, shows the complete procedure how to find the full eigenvalues of a general
matrix. Since Ak is similar to A, the eigenvalues are preserved each k. By Theorem 3.1, the
sequence Ak will eventually become upper triangular matrix, which reveals the eigenvalues on
its diagonal.
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Algorithm 5 QR Method
Input : an n× n matrix A
A0 = A
for k = 0, 1, 2, · · · do

Ak = Qk+1Rk+1

Ak+1 = Rk+1Qk+1

end for
Output : an upper triangular matrix Ak for some large k
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