• Title/Summary/Keyword: Eigenvector Method

Search Result 159, Processing Time 0.03 seconds

Prediction of Modified Structural Natural Frequencies and Modes using Interative Sensitivity Coefficient (감도계수 반복법을 이용한 구조물의 고유진동수 및 고유벡터 변화량 예측)

  • 이정윤
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.5
    • /
    • pp.40-46
    • /
    • 2000
  • This study predicts the modified structural eigenvector and eigenvalue due to the change in the mass and stiffness of 2-dimesional continuous system by iterative calculation of the sensitivity coefficient using the original dynamic characteristic. The method is applied to examples of a crank shaft by modifing the mass and stiffness. The predicted dynamics characteristics are in good agreement with these from the structural analysis using the modified mass and stiffness. The predicted dynamic characteristics are in good agreement with these from the structural analysis using the modified mass and stiffness.

  • PDF

Statistical Analysis on Frequency Estimation of Multiple Sinusoids from EV with a Data based Covariance Matrix (데이터 기초의 공분산 행렬로 구성된 EV 방법으로부터 다중 정현파의 주파수 추정에 관한 통계적 분석)

  • Ahn, Tae-Chon;Tak, Hyun-Su;Choi, Byung-Yun
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.453-456
    • /
    • 1992
  • A Data-based Covariance Matrix(DCM) is introduced in the Eigenvector(EV) method, among subspace methods of estimating multiple sinusoidal frequencies from finite white noisy measurements. It is shown that the EV with the DCM can obtain the true. frequencies from finite noiseless data Some asymptotic results and further improvement on the DCM are also presented mathematically. Monte-carlo simulations are statistically conducted from the view-points of means and standard deviations in the EV's of DCM and Conventional Covariance Matrix(CCM). Simulations show a great promise for using the DCM, particularly for the cases of short data records, closely spaced frequencies and high signal-to-noise ratios.

  • PDF

Eigenstructure Assignment for a Looper Control System

  • Lee, Dong-Wook;Ahn, Byoung-Joon;Park, Sung-Han;Lee, Man-Hyung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.68.3-68
    • /
    • 2001
  • We describe the looper controller design for a hot strip mill. The looper is to control the strip tension which influences on the width of the strip. It is very important to control the looper control of the hot strip mill, but difficult to control the looper, because there exists mutual interaction among strip gauge, looper angle, and strip tension. In this paper, we present the modeling for the looper of a hot strip mill to control the tension of the strip and suggest a eigenstructure assignment method. The eigenstructure assignment is useful tool that allows the designer to satisfy damping, settling time, and mode decoupling specifications directly by choosing eigenvalue and eigenvectors. Desired eigenvalue and eigenvector are chosen to satisfy the desired responses.

  • PDF

Applications of Eigen-Sensitivity for Contingency Screening of Transient Stability in Large Scale Power Systems (대규모 전력계통의 과도안정도 상정사고 선택에 고유치감도 응용)

  • Shim, Kwan-Shik;Nam, Hae-Kon;Kim, Yong-Ku;Song, Sung-Geun
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.193-196
    • /
    • 1999
  • This paper presents a new systematic contingency selection and screening method for transient stability. The variation of modal synchronizing torque coefficient(MSTC) is computed using eigen-sensitivity analysis of the electromechanical oscillation modes in small signal stability model and contingencies are ranked in decreasing order of the sensitivities of the MSTC(SMSTC). The relevant clusters are identified using the eigenvector or participating factor. The proposed algorithm is tested on the KEPCO system. Ranking obtained by the SMSTC is consistent with the time simulation results by PSS/E.

  • PDF

Shape Finding of Bio-Tensegrity Structural System (바이오텐세그리티 구조 시스템의 형상 결정)

  • Yang, Dae-Hyeon;Kim, Mi-Hee;Kang, Joo-Won;Kim, Jae-Yeol
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.2
    • /
    • pp.25-34
    • /
    • 2018
  • This study investigated a bio-tensegrity structural system that combines the characteristics of a general tensegrity structural system with a biological system. The final research objective is to accomplish a changeability for the structural system as like the movement of the natural bio-system. In the study, we present a shape finding procedure for the two stage bio-tensegrity system model inspired by the movement pattern of animal backbone. The proposed system is allowing a dynamic movement by introducing the concept of "saddle" for the variable bio-tensegrity structure. Several shape finding analysis example and results are presented and shows a efficient validation and suitability.

Optimal Placement for FACTS to Improve Static Voltage Stability

  • Gu, Min-Yan;Baek, Young-Sik
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.3
    • /
    • pp.141-145
    • /
    • 2004
  • FACTS devices, such as the Thyristor Controlled Series Compensator (TCSC) and Static Var Compensators (SVC), can help increase system load margin to improve static voltage stability. In power systems, because of the high cost and the effect value, the optimal placement for FACTS devices must be determined. This paper investigates the use of the series device (SVC) and the parallel device (TCSC) from the point of load margin to increase voltage stability. It considers the sensitivity of load margin to the line reactance and eigenvector of the collapse. The study has been carried out on the IEEE 14 Bus Test System to verify the validity and efficiency of the method. It reveals that incorporation of FACTS devices significantly enhance load margin as well as system stability.

Optimal Adaptive Filter Design of M-wave Elimination for Treating Tooth Grinding

  • Yeom, Hojun
    • International journal of advanced smart convergence
    • /
    • v.5 no.4
    • /
    • pp.66-70
    • /
    • 2016
  • When tooth grinding occurs, electrical stimulation is given at the same time, and tooth grinding stops on such stimulation. Electromyography signals are used as control signals of electrical stimulation to disturb tooth grinding. However because of the electrical stimulation, the M-waves are generated and mixed with spontaneous electromyogram. In this study, we designed an optimal filter to remove M-wave and conserve spontaneous electromyogram simultaneously. The inverse power method (IPM) showed that the optimal filter coefficient is the eigenvector corresponding to the minimum eigenvalue of the input covariance matrix. In order to evaluate the performance of the optimal filter, we compared using a conventional band pass filter and adaptive filter using least mean square algorithm. The experimental results show that the optimal filter can effectively remove the M-wave compared to the previously studied prediction error filter.

Eigenderivative Analysis of the Damped Structurure due to Modification of Mass and Stiffness (질량과 강성 변경 따른 감쇠구조물의 동특성 변화 해석)

  • Lee, Jung-Youn
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.4
    • /
    • pp.7-12
    • /
    • 2005
  • This study predicts the modified eigenvectors and eigenvalues of the damped structure due to the change in the mass, damping and stiffness of structure by calculation of the sensitivity coefficient using the original dynamic characteristic. The method is applied to examples of the damped 3 degree of freedom system by modifing the mass, damping and stiffness. The predicted dynamic characteristics are in good agreement with these from the structural reanalysis using the modified mass, damping and stiffness.

Face Image Compression using Generalized Hebbian Algorithm of Non-Parsed Image

  • Kyung Hwa lee;Seo, Seok-Bae;Kim, Daijin;Kang, Dae-Seong
    • Proceedings of the IEEK Conference
    • /
    • 2000.07b
    • /
    • pp.847-850
    • /
    • 2000
  • This paper proposes an image compressing and template matching algorithm for face image using GHA (Generalized Hebbian Algorithm). GHA is a part of PCA (Principal Component Analysis), that has single-layer perceptrons and operates and self-organizing performance. We used this algorithm for feature extraction of face shape, and our simulations verify the high performance for the proposed method. The shape for face in the fact that the eigenvector of face image can be efficiently represented as a coefficient that can be acquired by a set of basis is to compress data of image. From the simulation results, the mean PSNR performance is 24.08[dB] at 0.047bpp, and reconstruction experiment shows that good reconstruction capacity for an image that not joins at leaning.

  • PDF

High Resolution AR Spectral Estimation by Principal Component Analysis (Principal Componet Analysis에 의한 고 분해능 AR 모델링과 스텍트럼 추정)

  • 양흥석;이석원;공성곤
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.11
    • /
    • pp.813-818
    • /
    • 1987
  • In this paper, high resolution spectral estimation by AR modelling and principal comonent analysis is proposed. The given data can be expanded by the eigenvectors of the estimated covariance matrix. The eigenspectrum is obtained for each eigenvector using the Autoressive(AR) spectral estimation technique. The final spectrum estimate is obtained by weighting each eigenspectrum with the corresponding eigenvalue and summing them. Although the proposed method increases in computational complexity, it shows good frequency resolution especially for short data records and narrow-band data whose signal-to-noise ratio is low.