• Title/Summary/Keyword: Eigenvalue sensitivity

Search Result 109, Processing Time 0.023 seconds

The Eigenvalue Sensitivity Analysis in Multimachine Power Systems (다기계통의 고유치감도해석에 관한 연구)

  • 권세혁;노규민;김덕영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.372-380
    • /
    • 1994
  • A systematic procedure for the elements of system state matrix in multimachine systems with loads and eigenvalue technique which utilize stage matrix have widespread application in the analysis of small signal stability. Synchronous machines are represented by either a two-axis model or classical model. The interrelationship of submatrices of system matrix is investigated. Once elements of one submatrix are determined, they can be used to calculate the elements of the other submatrix. The approach is useful in the eigenvalue sensitivity analysis for various initial conditions and for the adjustment of generator controller parameters. It is illustrated for a three-machine and nine-bus multimachine system(WSCC system) with constant impedance loads.

Characteristics of the Eigenvalue Sensitivities to the Change of Element Correction Factors for Beams

  • Lee, Gun-Myung;Park, Young-Hyo
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.6
    • /
    • pp.955-960
    • /
    • 2004
  • Some characteristics of the eigenvalue sensitivities have been found for beams in the paper. For cantilever beams and simply supported beams, the sensitivities of the eigenvalues to the stiffness correction factor of one element are equal and opposite to the sensitivities to the mass correction factor of the symmetrically positioned element. For beams with other boundary conditions, however, the relationship does not hold. The relationship has been proven analytically for simply supported beams.

Eigenvalue design sensivity analysis of structure using continuum method (연속법에 의한 판구조 고유진동수의 민감도 해석)

  • 이재환;장강석;신민용
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.3-9
    • /
    • 1997
  • In this paper, design sensivity of plate natural frequency is computed for thickness design variables. Once the variational equation is derived from Lagrange quation using the virtual displacement, governing energy bilinear form is obtained and sensivity equation is formulated through the first variation. Natural frequency is obtained using the commercial FEM code and the accuracy of sensivity is verified by finite difference. The accuracy of natural frequency and sensivity improves for the fine mesh model.

  • PDF

Identification of Correlative Transmission Lines for Stability Diagnosis of Power System (전력계통의 안정도 진단이 가능한 선로 선정에 관한 연구)

  • 조윤성;장길수;권세혁
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.5
    • /
    • pp.271-278
    • /
    • 2003
  • Power system stability is correlated with system structure, disturbances and operating conditions, and power flows on transmission lines are closely related with those conditions. This paper proposes a methodology to identify correlative power flows for power system transient and small-signal stability prediction. In transient stability sense, the Critical Clearing Time is used to select some dominant contingencies, and Transient Stability Prediction index is proposed for the quantitative comparison. For small-signal stability, this paper discusses a methodology to identify crucial transmission lines for stability Prediction by introducing a sensitivity factor based on eigenvalue sensitivity technique. On-line monitoring of the selected lines enables to predict system stability in real-time. Also, a Procedure to make a priority list of monitored transmission lines is proposed. The procedure is applied to a test system and the KEPCO systems in the year of 2003 and it shows capabilities of the proposed method

Mode Shape Variation of Disc Brake with Respect to Contact Stiffness Variation (마찰재 접촉강성에 따른 디스크 브레이크 진동모드 형상화)

  • Kang, Jae-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.127-132
    • /
    • 2010
  • Eigensolutions associated with self-excited vibration of disc brake system can be obtained by complex eigenvalue analysis. The eigenvalue sensitivity to change in contact stiffness can be used to demonstrate stability criteria and eigenvalue veering. Dynamic instability on eigenvalue loci with respect to the variation of contact stiffness is found to be related to mode interaction between two adjacent modes. This modal interaction can be effectively shown by mode shape visualization. This paper presents the methodology to construct the mode shape of disc brake system where a disc and two brake pads are coupled with contact stiffness.

Eigenvalue Perturbation of Augmented Matrix for Control Parameter (제어기 정수에 대한 확대행렬의 고유치 perturbation)

  • Shim, K.S.;Song, S.G.;Nam, H.K.;Kim, Y.G.;Moon, C.J.
    • Proceedings of the KIEE Conference
    • /
    • 2001.05a
    • /
    • pp.17-19
    • /
    • 2001
  • In this paper, eigenvalue perturbation theory and its applications for the augmented system matrix are described. This theory is quite useful in the cases where any change in a system parameter results in signifiant changes to most of the elements of the augmented matrix or where the forming of sensitivity matrix so complicate. And AMEP(augmented matrix eigenvalue perturbation) for the excitation system parameters are computed for analysis of small signal stability of KEPCO 215-machine 791-bus system.

  • PDF

Optimal Distribution of Viscoelastic Material for Transient Vibration Suppression of a Flexible Beam (유연보의 과도 진동 감쇠를 위한 점탄성 재료의 최적 분포)

  • Kim, Tae-Woo;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.605-610
    • /
    • 2002
  • Eigenvalues are taken as performance criteria for structural damping design using viscoelastic material. Given material properties, optimal distribution of damping material is sought based on eigenvalue sensitivity. For eigenanalysis of frequency dependent viscoelastic material treated structures, Golla-Mushes-McTavish (GHM) model is used and some dominant modes are chosen for consideration. To avoid the intensity of computation caused by increased problem size, an alternative approximate method is proposed which uses elastic modes and can be applied under small damping assumption. A cantilever beam treated with unconstrained viscoelastic layer is tested and optimal distribution of thickness of the layer is illustrated. Partial coverage configurations are compared with the one-sided full coverage case.

  • PDF

Small Signal Stability Analysis of Doubly Fed Induction Generator including SDBR

  • Shawon, Mohammad Hasanuzzaman;Al-Durra, Ahmed;Caruana, Cedric;Muyeen, S.M.
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.1
    • /
    • pp.31-39
    • /
    • 2013
  • This paper presents small signal stability analysis of a doubly fed induction generator (DFIG) based wind farm including series dynamic braking resistor (SDBR) connected at the stator side. A detailed mathematical model of wind turbine, DFIG machine and converters and SDBR is presented in this paper to derive the complete dynamic equations of the studied system. Small signal stability of this system is carried out by modal and sensitivity analysis, participation factors and eigenvalue analysis. Finally, this paper presents an analysis of the dynamic behavior of DFIG based wind farm under voltage dip condition with and without SDBR.

Structural Dynamics Modification Using Position of Beam Stiffener on Plate (평판에서 빔 보강재의 결합 위치를 이용한 구조물 변경법)

  • Jung, Eui-Il;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.599-604
    • /
    • 2002
  • Substructures position is considered as design parameter to obtain optimal structural changes to raise its dynamic characteristics. In conventional SDM (structural dynamics modification) method, the layout of modifying substructures position is first fixed and at that condition the structural optimization is performed by using the substructures size and/or material property as design parameters. But in this paper as a design variable substructures global translational and rotational position is treated. For effective structural modification the eigenvalue sensitivity with respect to that design parameter is derived based on measured frequency response function. The optimal structural modification is calculated by combining eigenvalue sensitivities and eigenvalue reanalysis technique iteratively. Numerical examples are presented to the case of beam stiffener optimization to raise the natural frequency of plate.

  • PDF

Structural Dynamics Modification via Reorientation of Modification Elements (구조물의 결합 위치 변경을 통한 구조물 변경법)

  • Jung, Eui-Il;Park, Youn-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.666-669
    • /
    • 2004
  • Substructures position is considered as design parameter to obtain optimal structural changes to raise its dynamic characteristics. In conventional SDM (structural dynamics modification) method, the layout of modifying substructures position is first fixed and at that condition the structural optimization is performed by using the substructures size and/or material property as design parameters. But in this paper as a design variable substructures global translational and rotational position is treated. For effective structural modification the eigenvalue sensitivity with respect to that design parameter is derived based on measured frequency response function. The optimal structural modification is calculated by combining eigenvalue sensitivities and eigenvalue reanalysis technique iteratively. Numerical examples are presented to the case of beam stiffener optimization to raise the natural frequency of plate.

  • PDF