본 논문에서는 신호의 반 파장 간격으로 안테나 소자를 배치한 빔형성 시스템에서 다이버시티 이득을 얻을 수 있는 빔형성 알고리즘을 제안한다. 제안된 알고리즘은 수신 신호 공간을 스팬(span)하는 고유 벡터들을 이용하여 빔형성 한다. 본 논문에서는 채널 추정을 위한 최적의 고유 공간 차수를 정하기 위한 기준도 제안한다. 제안된 알고리즘을 적용한 빔형성 시스템은 기존의 빔형성 시스템과는 달리 각 퍼짐이 증가함에 따라 다이버시티 이득을 얻어 그 성능이 개선된다. 본 논문은 제안된 알고리즘의 설명과 함께 다양한 컴퓨터 시뮬레이션을 통한 제안 알고리즘의 성능 분석을 제공한다.
This paper introduces the downlink Eigen-beamformer with Space-Time Block Code (STBC)[1,2] employed on the MISO (Multiple Input Multiple Output) systems. The proposed scheme is acquired both transmit diversity gain from STBC and beamforming gain from Eigen-beamformer. In general, it is well described that the diversity gain be maximized when channel parameters associated to fingers are mutually independent. Major role of utilizing Eigen-beamformer is to enforce channel parameters being uncorrelated. According to this, the proposed STBC combined with Eigen-beamformer on the downlink significantly improves its performance under the spatially correlated channel. Simulation results are accomplished under three distinct channels conditioned with varying the degree of their correlations. The result indicates that our proposed scheme is good performance in spatially correlated channel.
Kim, Hong-Cheol;Park, jae-Hyung;Yoan Shin;Lee, Won-Cheol
대한전자공학회:학술대회논문집
/
대한전자공학회 2002년도 ITC-CSCC -3
/
pp.1932-1935
/
2002
This paper introduces the downlink Eigen-beamformer with Space-Time Block Code (STBC) 〔1,2〕employed on the MISO (Multiple Input Multiple Output) systems. The proposed scheme is acquired both transmit diversity gain from STBC and beamforming gain from Eigen-beamformer. In general, it is well described that the diversity gain be maximized when channel parameters associated to fingers are mutually independent. Major role f utilizing Eigen-beamformer is to enforce channel parameters being uncorrelated. According to this, the proposed STBC combined with Eigen-beamformer on the downlink significantly improves its performance under the spatially correlated channel. Simulation results are accomplished under three distinct channel conditioned with varying the degree of their correlations. The result indicates hat our proposed scheme is good performance in spatially correlated channel.
In the present paper, we consider an anomalous diffusion problem in two dimensional space involving Caputo time and Riesz-Feller fractional derivatives and then solve it by using a series involving bilateral eigen-functions. Also, we obtain a numerical approximation formula of this problem and discuss some of its particular cases.
현재 주화의 제조 공정에서는 주화의 표면 품질 진단을 사람이 눈으로 직접 확인하여 수행하고 있다. 본 논문은 컨베이어 벨트에 놓이어 이동하는 주화로부터 획득한 영상을 이용하여 주화 표면의 결함을 검출하는 영상처리 방법을 제시한다. 결함 검출 방법은 영상에서 주화 영역을 분할하고, 분할된 동전을 비교할 모델에 정렬하며, 정렬된 영상을 최적의 고유 영상 공간으로 투영, 투영 오차와 학습된 가변 임계값과 비교하여 결함 부위를 검출한다. 본 논문에서는 이러한 일련의 영상처리 과정 중에서 주화 표면 진단과 관련하여 특화된 새로운 방법을 제시한다. 주화의 정렬을 위하여 분할된 주화의 히스토그램을 사용한다. 이 방법은 2차원 영상의 정렬을 일차원 히스토그램의 정렬로 변환하는 것이다. 다음으로 정렬된 영상을 고유 영상공간에 투영시켜 주화 방향에 따른 휘도 변화를 보정한다. 이 방법은 소수의 고유 영상 벡터들로 구성된 고유 영상 공간을 여러 개 생성하고, 최적의 고유 영상 공간에 정렬된 영상을 투영하여 실시간 구현이 가능하게 한다.
Suitable for multi-input multi-output (MIMO) communications, the joint beamforming space-time block coding (JBSTBC) scheme is proposed for high-speed downlink transmission. The major functionality of the scheme entails space-time block encoder and joint transmit and receive eigen-beamformer (EBF) incorporating with block-ordered layered decoder (BOLD), and its operating principle is described in this paper. Within these functionalities, the joint EBFs will be utilized for decorrelating fading channels to cause an enhancement in the spatial diversity gain. Furthermore, to fortify the capability of layered successive interference cancellation (LSIC) in block-ordered layered decoding process, this paper will develop a simple ad-hoc transmit power discrimination scheme (TPDS) based on a particular power discrimination function (PDF). To confirm the superior behavior of the proposed JBSTBC scheme employing ad-hoc TPDS, computer simulations will be conducted under various channel conditions with the provision of detailed mathematical derivations for clarifying its functionality.
An eigen color co-occurrence approach is proposed that exploits the correlation between color channels to identify the degree of image similarity. This method is based on traditional co-occurrence matrix method and histogram equalization. On the purpose of feature extraction, eigen color co-occurrence matrices are computed for extracting the statistical relationships embedded in color images by applying Principal Component Analysis (PCA) on a set of color co-occurrence matrices, which are computed on the histogram equalized images. That eigen space is created with a set of orthogonal axes to gain the essential structures of color co-occurrence matrices, which is used to identify the degree of similarity to classify an input image to be tested for various purposes. In this paper RGB, Gaussian color space are compared with grayscale image in terms of PCA eigen features embedded in histogram equalized co-occurrence features. The experimental results are presented.
이 논문에서는 비유사도-기반 분류(dissimilarity-based classifications: DBC)를 효율적으로 수행할 수 있는 차원 축소 방법들을 비교 평가한 실험 결과를 보고한다. DBC에선 분류를 위해 대상 물체를 측정한 결과 값들(특징 요소들의 집합)을 이용하는 대신에 각 대상 물체들 사이의 비유사도를 측정하여 분류한다. 현재 DBC와 관련된 이슈들 중의 하나는 대규모 데이터를 취급할 경우에 비유사도 공간의 차원이 고차원으로 되는 문제가 있다. 이 문제를 해결하기 위하여 현재 프로토타입 선택(prototype selection: PS)방법이나 차원 축소(dimension reduction: DR)방법을 이용하고 있다. PS는 전체 학습 데이터에서 프로토타입을 추출하여 비유사도 공간을 구성하는 방법이고, DR은 전체 학습 데이터로 먼저 비유사도 공간을 구성한 다음 이 공간의 차원을 축소하는 방법이다. 이 논문에서는 PS이나 DR 대신에, 학습 데이터에 대한 주성분 분석으로 적절한 차원의 고유 공간 (Eigen space: ES)을 구성한 다음, 이 고유 공간으로 매핑 된 벡터들 사이의 $l_p$-놈(norm) 거리를 비유사도 거리로 측정하여 이용하는 DBC를 제안한다. 인터넷에 공개된 인공 및 실세계 데이터를 이용하여 최 근방 이웃 분류규칙으로 ES에서 수행한 DBC의 분류 성능을 측정한 결과, 고유공간의 차원을 적절하게 선정하였을 경우 PS와 DR를 이용한 DBC보다 분류 성능이 더 향상되었음을 확인하였다.
In this paper, a new noise compensation method based on the eigenvoice framework in feature space is proposed to reduce the mismatch between training and testing environments. The difference between clean and noisy environments is represented by the linear combination of K eigenvectors that represent the variation among environments. In the proposed method, the performance improvement of speech recognition systems is largely affected by how to construct the noisy models and the bias vector set. In this paper, two methods, the one based on MAP adaptation method and the other using stereo DB, are proposed to construct the noisy models. In experiments using Aurora 2 DB, we obtained 44.86% relative improvement with eigen-environment method in comparison with baseline system. Especially, in clean condition training mode, our proposed method yielded 66.74% relative improvement, which is better performance than several methods previously proposed in Aurora project.
This paper is mainly forcused on the application of modal analysis In analyze the geometrically non-linear buckling behaviors of large span spatial structures, and the evaluation of each eigen mode affected post-buckling behaviors and buckling loads. Modal analysis is applied . to derivation of the system matrices transforming actual displacement space into generalized coordinates space represented by coefficients multiplied in the linear combination of eigen modes which are independent and orthogonal each other. By using modal analysis method, it will be expected to save the calculating time by computer extremely. For example, we can obtain the satisfactorily good results by using about 7% of total eigen modes only in case of single layer latticed dome. And we can decrease the possibility of divergence on the bifurcation point in the calculation of post-buckling path. Arc-length method and Newton-Raphson iteration method are used to calculate the nonlinear equilibrium path.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.