• Title/Summary/Keyword: Eh-pH

Search Result 162, Processing Time 0.026 seconds

Effect of Cerium Ammonium Nitrate and Alumina Abrasive Particles on Polishing Behavior in Ruthenium Chemical Mechanical Planarization (Ruthenium CMP에서 Cerium Ammonium Nitrate와 알루미나 연마 입자가 연마 거동에 미치는 영향)

  • Lee, Sang-Ho;Lee, Sung-Ho;Kang, Young-Jae;Kim, In-Kwon;Park, Jin-Goo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.9
    • /
    • pp.803-809
    • /
    • 2005
  • Cerium ammonium nitrate (CAN) and nitric acid was used an etchant and an additive for Ru etching and polishing. pH and Eh values of the CAN and nitric acid added chemical solution satisfied the Ru etching condition. The etch rate increased linearly as the concentration of CAN increased. Nitric acid added solution had the high etch rate. But micro roughness of etched surfaces was not changed before and after etching, The removal rate of Ru film was the highest in $1wt\%$ abrasive added slurry, and not increased despite the concentration of alumina abrasive increased to $5wt\%$. Even Ru film was polished by only CAN solution due to the friction. The highest removal rate of 120nm/min was obtained in 1 M nitric acid and $1wt\%$ alumina abrasive particles added slurry. The lowest micro roughness value was observed in this slurry after polishing. From the XPS analysis of etched Ru surface, oxide layer was founded on the etched Ru surface. Therefore, Ru was polished by chemical etching of CAN solution and oxide layer abrasion by abrasive particles. From the result of removal rate without abrasive particle, the etching of CAN solution is more dominant to the Ru CMP.

Investigation of Stabilization Effect on Arsenic Contamination Soils using Zerovalent Iron and Industrial by-products (영가철 및 산업폐기물을 활용한 비소오염토양의 안정화 효과조사)

  • Yu, Chan;Yun, Sung-Wook;Baek, Seung-Hwan;Park, Jin-Chul;Lee, Jung-Hoon;Lim, Young-Cheol;Choi, Seung-Jin;Jang, Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.229-241
    • /
    • 2008
  • In order to investigate stabilization effect on As-contaminated soils treated by zero-valent iron(ZVI) and industrial by-products, batch tests and column tests were carried out with As-contaminated soils collected from farmland around the abandoned mine site. In batch tests, ZVI and industrial by-products(blast furnace slag, steel refining slag and oyster shell powder) were used as treatment materials to reduce As. Industrial by-products were mixed with As-contaminated soils, in the ratio of 1%, 3%, 5% and 7% on the weight base of dried soil. After incubation, all samples showed the reduction of As concentration and it was expected that ZVI and steel refining slag were effective treatment materials to remove As among treatment materials used in batch test. In column tests, columns were made by acrylic with the dimension of diameter=10cm, height=100cm, thickness=1cm and these columns were filled with untreated soils and treated soils mixed with ZVI and steel refining slag(mixing ratio=3%). Distilled water was discharged into the columns with the velocity of 1 pore-volume/day. During test, pH, EC, Eh and As concentration were measured in the regular term(1 pore-volume). As a result, ZVI and steel refining slag were shown 93%, 62% reduction of As concentration respectively by comparison with untreated soils. Therefore, if ZVI and steel refining slag are used as treatment materials in As-contaminated soils, it is expected that the As concentration in soils is reduced effectively.

  • PDF

Seasonal and Spatial Variations of CO2 Fluxes Between Surface and Atmosphere in Foreshore, Paddy Field and Woods Sites (갯벌, 논 및 산림 부지에서 지표와 대기 사이의 이산화탄소 플럭스 계절/공간 변동 분석)

  • Kang, Dong-Hwan;Kwon, Byung-Hyuk;Yu, Hun-Sun;Kim, Park-Sa;Kim, Kwang-Ho
    • Journal of Environmental Science International
    • /
    • v.20 no.8
    • /
    • pp.963-975
    • /
    • 2011
  • For this research, they were monitored $CO_2$ flux and environmental factors ($CO_2$ concentration, soil temperature, soil moisture, soil organic carbon, soil pH, soil Eh) in foreshore, paddy field and woods sites at the winter season (January 2009) and the summer season (September 2009). Seasonal and spatial variations for monitored data were analyzed, and linear regression functions of $CO_2$ flux as environmental factors were estimated. $CO_2$ fluxes averaged between surface and atmosphere monitored in foreshore and paddy field at the winter season were shown $-8\;mgCO_2m^{-2}hr^{-1}$ and $-25\;mgCO_2m^{-2}hr^{-1}$, respectively. $CO_2$ fluxes averaged between surface and atmosphere monitored in foreshore and paddy field at the summer season were shown $47\;mgCO_2m^{-2}hr^{-1}$ and $117\;mgCO_2m^{-2}hr^{-1}$, respectively. Thus, $CO_2$ was sunk from atmosphere to surface at the winter season and it was emitted from surface to atmosphere at the summer season. $CO_2$ fluxes in woods site were emitted $145\;mgCO_2m^{-2}hr^{-1}$ at the winter season and $279\;mgCO_2m^{-2}hr^{-1}$ at the summer season.

Hydrogeochemistry of Supply Water in the Daedeok Campus of Chungnam National University, Korea (충남대학교 대덕캠퍼스내 상수도 물의 수리지구화학적 특성)

  • 이찬희
    • Economic and Environmental Geology
    • /
    • v.33 no.3
    • /
    • pp.181-193
    • /
    • 2000
  • This study was undertaken to evaluate the drinking water quality based on physicochemical properties and chemical compositions of the supply water in the Daedeok Campus, and to verify the analytical reliabilities of ICP-MS and IC equipped in the Central Research Facilities at Chungnam National University , Korea. The supply water belongs to $Ca^{2+}-({HCO_3}^-+{SO_4}^{2-})$type, whereas the original water from the Daecheong lake belongs to $(Ca^{2+}-(Mg^{2+})-{HCO_3}^-$ type. Generally, temperature (14.1$^{\circ}C$), pH (6.95), Eh (0 mV), electrical conductivity (117${\mu}$S/cm) and TDS (86.975mg/l) of supply water were higher than those of original lake water . Results using WATEQ4F revealed that potentially toxic ions of the supply water might exist mainly as free metals ($M^{2+}$) and a small amount as ${CO_3}^{2-}$ and $OH^-$ complexes. Also, the water composition belongs to the kaolinite field. Calculated average enrichment indies of the supply water normalized to lake water for anions, mamor cations, toxic cations and total ions are 1.05 , 1.56, 13.05 and 1.17 , respectively. Those values of the ground water in the Daedeok Campus showed 1.71, 4.78, 5.71 and 2.49 , respectively. However , contents of all constituents of these water are within the drinking water standard. All samples were filtered before the chemical analysis. Pale yellow or yellowish brown colored materials of colloidal particles coated the filter paper to thickness of 0.02 to 0.2mm. these are mainly Fe-Cy-Zn compounds with traces of Ni and Pb, the net weights of which compounds range from 0.01to 3.20mg/l. Most elements did not show any conceivable filtering effect of Cu, Fe and Zn. Especially, mean concentration of total Fe decreased considerably from 168.52${\mu}g$/lto 42.58${\mu}g$/l by filtering .

  • PDF

Suppression of Methane Emission from Rice Paddy Soils with Fly ash Amendment

  • Ali, Muhammad Aslam;Oh, Ju-Hwan;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.141-148
    • /
    • 2007
  • Fly ash, a by-product of the coal-burning industry, and a potential source of ferro-alumino-silicate minerals, which contains high amount of ferric oxide and manganese oxide (electron acceptors), was selected as soil amendment for reducing methane $(CH_4)$ emission during rice cultivation. The fly ash was applied into potted soils at the rate of 0, 2, 10, and 20 Mg $ha^{-1}$ before rice transplanting. $CH_4$ flux from the potted soil with rice plants was measured along with soil Eh and floodwater pH during the cropping season. $CH_4$ emission rates measured by closed chamber method decreased gradually with the increasing levels of fly ash applied but rice yield significantly increased up to 10 Mg $ha^{-1}$ application level of the amendment. At this amendment level, total seasonal $CH_4$ emission was decreased by 20% along with 17% rice grain yield increment over the control. The decrease in total $CH_4$ emission may be attributed due to suppression of $CH_4$ production by the high content of active and free iron, and manganese oxides, which acted as oxidizing agents as well as electron acceptors. In conclusion fly ash could be considered as a feasible soil amendment for reducing total seasonal $CH_4$ emissions as well as maintaining higher grain yield potential under optimum soil nutrients balance condition.

Long-Term Leaching Characteristics of Arsenic Contaminated Soils Treated by the Stabilization Method (안정화 처리된 비소오염토양의 장기 용출특성)

  • Yu, Chan;Yun, Sung-Wook;Baek, Seung-Hwan;Park, Jin-Chul;Lee, Jung-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1463-1474
    • /
    • 2008
  • In order to investigate stabilization effect and sustainability on As-contaminated farmland soils which were affected the abandoned mine site and stabilized by zerovalent iron(ZVI) and industrial by-products, batch-scale and pilot-scale tests were carried out. In batch tests, ZVI and industrial by-products(blast furnace slag, steel refining slag and oyster shell powder) were used in treatment materials to reduce the As leaching. Industrial by-products were mixed with As-contaminated soils, in the ratio of 1%, 3%, 5% and 7% on the weight base of dried soil. The results of batch-scale tests was shown that the reduction of As concentration was observed in all samples and it was expected that ZVI and steel refining slag were more effective than other treatment materials to stabilize As compounds. In pilot-scale tests, columns were filled with untreated soils and treated soils mixed with ZVI and steel refining slag in the same mixing ratio of 3%. Distilled water was discharged into the columns with the velocity of 0.3 pore volume/day. During the test, pH, EC, Eh and As concentration were measured in the regular term(1pore volume). after six months, pilot-scale tests were retested to investigate sustainability of treatment materials. As a result, It was shown that the leachate from control column was continuously released during the test period and its concentration was greater than $100ug{\cdot}L^{-1}$ which was exceeded the national regulation of water discharged to river or stream ($50ug{\cdot}L^{-1}$). On the other hand, soil treated with ZVI and steel refining slag showed that the concentrations of leachate were lower than national regulation of water discharged to river or stream. Therefore it was expected that ZVI and steel refining slag could be applied to the farmland site as the alternative treatment materials.

  • PDF

Physicochemical and Microbiological Properties of Skate (Raja kenojei) Kimchi on the Market (시판 홍어 김치의 이화학적 및 미생물학적 특성)

  • Kim, Kyung-Hee;Cho, Hee-Sook
    • Journal of the Korean Society of Food Culture
    • /
    • v.23 no.2
    • /
    • pp.235-242
    • /
    • 2008
  • In this study, the physicochemical and microbiological properties of market-available skate (Raja kenojei) kimchi were evaluated in comparison to long-term fermented Baechu kimchi. The comparative results for the skate (Raja kenojei) and Baechu kimchi products are as follows: salt concentrations = 3.40% and 3.95%, respectively; pH and acidity values = 4.01 and 3.90, and 0.65% and 0.82%, respectively; redox potential Eh values = 119.82 mV and 123.08 mV respectively; reducing sugars levels = 15.51 mg% and 13.23mg%, respectively; ascorbic acid levels = 24.21mg% and 22.18mg%, respectively; color L-values = 46.86 and 44.54, a-values = 15.46 and 12.28, and b-values = 29.94 and 28.36, respectively; hardness properties = 11.36 kgf and 10.23 kgf, respectively; hot water soluble pectin (HWSP) contents and sodium hexametaphosphate soluble pectin (NaSP) contents = 15.23% and 17.35%, and 32.51% and 29.64%, respectively; hydrochloric acid soluble pectin (HClSP) contents = 55.1% and 53.2%, respectively; total viable cell counts = $4.78{\times}10^8$ and $1.35{\times}10^8$, respectively; lactic acid bacteria counts = $5.18{\times}10^5$ and $1.32{\times}10^5$, respectively; and yeast levels = $8.52{\times}10^5$ and $5.23{\times}10^5$, respectively.

A Study on the Geochemical Clogging for the Assessment of the Hydrological Safety of the Underground Oil Storage Carvern (지하유류비축기지 수리안정성 평가를 위한 광물학적 클로깅 가능성 연구)

  • Kim, Geon-Young;Bae, Dae-Seok;Choi, Byeong-Young;Oh, Se-Joong;Koh, Yong-Hwon
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.139-159
    • /
    • 2008
  • Geochemical analysis of the various kinds of water including observation borehole groundwater was carried out for the assessment of the hydrological safety of the underground oil storage cavern and the potentiality of mineralogical and microbiological clogging was estimated. Most of water samples belonged to $Ca-HCO_3$ and $Ca-HCO_3-SO_4$ types. There was no distinct chemical difference in the various kinds of water. All kinds of water are undersaturated with the calcite which is the major clogging mineral. Most water samples have low Fe and Mn concentrations. However, they are saturated or oversaturated with the iron-oxide/hydroxide minerals and have high dissolved oxygen contents which suggests the possibility of clogging by the iron-oxide/hydroxide minerals as a long-term aspect. Several water samples from the ground observation borehole also show the high saturation indices far the clay minerals, which can fill up the fractures, indicating the possibility of clogging by the clay minerals. Statistical analysis shows the degree of mineral precipitation or dissolution is mainly controlled by pH, Eh and DO of water samples. According to the microbial analysis, the aerobic microbes and slime forming bacteria are dominant in most water samples and anaerobic microbes including sulfate reducing bacteria are very low or not detected. Although the slime forming bacteria which are known as a main microbial cause of the clogging is lower than $10^5\;CFUs/mL$ in all water samples, because the slime forming bacteria are dominant microbe in several observation boreholes, the clogging can be caused by it as a long-term aspect. In addition, the possibility of clogging can be increased if the microbial effect is combined with the mineralogical effect such as iron oxide/hydroxide minerals for the possibility of clogging. Therefore, the systematic and long-term program for the assessment of clogging is required for the safe operation of underground oil storage cavern.

Analysis of Bacterials Community Structure in Leadchate-Contaminated Groundwater using Denaturing Gradient Gel Electrophoresis (Denaturing Gradient Gel Electrophoresis를 이용한 매립지 침출수로 오염된 지하수의 세균 군집 분석)

  • Kim Jai-Soo;Kim Ji-Young;Koo So-Yeon;Ko Kyung-Seok;Lee Sang-Don;Cho Kyung-Suk;Koh Dong-Chan
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.166-173
    • /
    • 2006
  • This research has been performed to clarify the relationship between hydrogeochemistry and bacterial community structure in groundwater contaminated with landfill leachate. We collected and analyzed samples from 5 sites such as leachate (KSG1-12), treated leachate (KSG1-16), two contaminated groundwaters (KSG1-07 and KSG1-08) and non-contaminated groundwater (KSG1-13). pH was 8.83, 8.04, 6.87, 6.87 and 6.53 in order; redox potential (Eh) 108, 202, 47, 200 and 154 mV; electric conductivity (EC) 3710, 894, 1223, 559 and 169.9 $\mu$S/cm; suspended solids (SS) 86.45, 13.74, 4.18, 0.24 and 11.91 mg/L. In KSG01-12, the ion concentrations were higher especially in $Cl^-$ and $HCO_3^-$ than other sites. The concentrations of Fe, Mn and $SO_4^{2-}$ were higher In KSG1-07 than in KSG1-08, and vise versa in $NO_3^{2-}$. In the comparison of DGGE fingerprint patterns, the similarity was highest between KSG1-13 and KSG1-16 (57.2%), probably due to common properties like low or none contaminant concentrations. Otherwise KSG1-08 showed lowest similarities with KSG1-13 (25.8%) and KSG1-12 (27.6%), maybe because of the degree of contamination. The most dominant bacterial species in each site were involved in $\alpha$-Proteobacteria (55.6%) in KSG1-12, $\gamma$-Proteobacteria (50.0%) in KSG1-16, $\beta$-Proteobacteria (66.7%) in KSG1-07, $\gamma$-Proteobacteria (54.5%) in KSG1-08 and $\beta$-Proteobacteria (36.4%) in KSG1-13. These results indicate that the microbial community structure might be changed according to the flow of leachate in grounderwater, implying changes in concentrations of pollutants, available electron accepters and/or other environmental conditions.

Microbial Leaching of Iron from Magnetite (미생물을 이용한 자철석으로부터 철 침출에 관한 연구)

  • Roh, Yul;Oh, Jong-Min;Seo, Yong-Jae;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.19 no.4 s.50
    • /
    • pp.265-275
    • /
    • 2006
  • It is in its infancy to use bacteria as a novel biotechnology for leaching precious and heavy metals from raw materials. The objective of this study was to investigate biogeochemical processes of iron leaching from magnetite reduction by iron-reducing bacteria isolated from intertidal flat sediments, southwestern part of Korea. Microbial leaching experiments were performed using commercial magnetite, Aldrich magnetite, in well-defined mediums with and without bacteria. Water soluble Fe production was determined by ICP analysis of bioleached samples in comparison to uninoculated controls, and the resulting precipitated solids were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The extent of iron leaching from magnetite in the aerobic conditions (Fe = 107 ppm) was higher than that in the anaerobic environments (Fe = 94 ppm). In the anaerobic conditions, Fe(III) in commercial magnetite was also reduced to Fe(II), but no secondary mineral phases were observed. Amorphous iron oxides formed in the medium under aerobic conditions where there was sufficient supply of oxygen from the atmosphere. SEM observation suggests that the reduction process involves dissolution-precipitation mechanisms as opposed to solid state conversion of magnetite to amorphous iron oxides. The ability of bacteria to leach soluble iron and precipitate amorphous iron oxides from crystalline magnetite could have significant implications for biogeochemical processes in sediments where Fe(III) in magnetite plays an important role in the largest pool of electron acceptor as well as the tool as a novel biotechnology for leaching precious and heavy metals from raw materials.