Browse > Article
http://dx.doi.org/10.5322/JES.2011.20.8.963

Seasonal and Spatial Variations of CO2 Fluxes Between Surface and Atmosphere in Foreshore, Paddy Field and Woods Sites  

Kang, Dong-Hwan (Geo-Sciences Institute, Pukyong National University)
Kwon, Byung-Hyuk (Department of Environmental Atmospheric Sciences, Pukyong National University)
Yu, Hun-Sun (Department of Environmental Atmospheric Sciences, Pukyong National University)
Kim, Park-Sa (Department of Environmental Atmospheric Sciences, Pukyong National University)
Kim, Kwang-Ho (Department of Environmental Atmospheric Sciences, Pukyong National University)
Publication Information
Journal of Environmental Science International / v.20, no.8, 2011 , pp. 963-975 More about this Journal
Abstract
For this research, they were monitored $CO_2$ flux and environmental factors ($CO_2$ concentration, soil temperature, soil moisture, soil organic carbon, soil pH, soil Eh) in foreshore, paddy field and woods sites at the winter season (January 2009) and the summer season (September 2009). Seasonal and spatial variations for monitored data were analyzed, and linear regression functions of $CO_2$ flux as environmental factors were estimated. $CO_2$ fluxes averaged between surface and atmosphere monitored in foreshore and paddy field at the winter season were shown $-8\;mgCO_2m^{-2}hr^{-1}$ and $-25\;mgCO_2m^{-2}hr^{-1}$, respectively. $CO_2$ fluxes averaged between surface and atmosphere monitored in foreshore and paddy field at the summer season were shown $47\;mgCO_2m^{-2}hr^{-1}$ and $117\;mgCO_2m^{-2}hr^{-1}$, respectively. Thus, $CO_2$ was sunk from atmosphere to surface at the winter season and it was emitted from surface to atmosphere at the summer season. $CO_2$ fluxes in woods site were emitted $145\;mgCO_2m^{-2}hr^{-1}$ at the winter season and $279\;mgCO_2m^{-2}hr^{-1}$ at the summer season.
Keywords
$CO_2$ flux; Environmental factors; Foreshore; Paddy field; Woods;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Yamamoto, A., Hirota, M., Suzuki, S., Oe, Y., Zhang, P., Mariko, S., 2009, Effects of tidal fluctuations on $CO_2\;and\;CH_4$ fluxes in the littoral zone of a brackish-water lake, Limnology, 10, 229-237.   DOI
2 Schlesinger, W. H., 1997, Biogeochemistry: An analysis of global change, Academic Press/Elsevier, San Diego, CA.
3 Sitaula, B. K., Bakken, L. R., and Abrahamsen, G., 1995, N-fertilization and soil acidification effects on $N_2O\;and\;CO_2$ emission from temperate pine forest soil, Soil Biology and Biochemistry, 27(11),1401-1408.   DOI
4 Verburg, P. J., Arnone III, J. A., Obrist, D., Schorran, D., Evans, R. D., Leroux-Swarthout, D., Johnson, D. W., Luo, Y., and Coleman, J. S., 2004, Net ecosystem carbon exchange in two experimental grassland ecosystems, Global Change Biology, 10, 498-508.   DOI
5 Xu, L., Baldocchi, D. D., Tan, J., 2004, How soil moisture, rain pulses, and growth alter the response of ecosystem respiration to temperature, Global Biogeochemical Cycles, 18, GB4002, Doi: 10.1029/2004GB002281.   DOI   ScienceOn
6 Papendick, R. I., Campbell, G. S., 1981, Theory and measurement of water potential, In Water potential relations in soil microbiology(Parr, J. F., Gardner, W. R., and Elliott, L. F., eds.), 1-22, Soil Science Society of America, Special Publication No. 9, Madison, WI.
7 Raich, J. W., Nadelhoffer, K. J., 1989, Belowground carbon allocation in forest ecosystems: Global trends, Ecology, 70(5), 1346-1354.   DOI
8 Rao, D. L. N., Pathak, H., 1996, Ameliorative influence of organic matter on biological activity of salt affected soils, Arid Soil Research and Rehabilitation, 10, 311-319.   DOI
9 Rayment, M. B., Jarvis, P. G., 2000, Temporal and spatial variation of soil CO2 efflux in a Canadian boreal forest, Soil Biology and Biochemistry, 32, 35-45.   DOI
10 Rogner, H.-H., Zhou, D., Bradley, R., Crabbe, P., Edenhofer, O., Hare, B., Kuijpers, L., Yamaguchi, M., 2007, In Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, B. Metz, O.R. Davidson, P.R. Bosch, R. Dave, L.A. Meyer (eds), Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
11 Lloyd, J., Taylor, J. A., 1994, On the temperature dependence of soil respiration, Functional Ecology, 8, 315-323.   DOI
12 Kayranli, B., Scholz, M., Mustafa, A., Hedmark, A., 2009, Carbon storage and fluxes within freshwater wetlands: a critical review, Wetlands, DOI 10.1007/s13157-009-0003-4.   DOI
13 Kowalenko, C. G., Ivarson, K. C., Cameron, D. R., 1978, Effect of moisture content, temperature and nitrogen fertilization on carbon dioxide evolution from field soils, Soil Biology and Biochemistry, 10, 417-423.   DOI
14 Liu, X., Wan, S., Su, B., Hui, d., Luo, Y., 2002, Response of soil $CO_2$ efflux to water manipulation in a tallgrass prairie ecosystem, Plant and Soil, 240, 213-223.   DOI   ScienceOn
15 Luo, Y, Zhou, X., 2006, Soil respiration and the environment, ELSEVIER, 305.
16 Field, C. B., Ball, J. T., Berry, J. A., 1989, Photosynthesis, principles and filed techniques. In Plant physiological ecology, field methods and instrumentation (Pearcy, R. W., Ehleringer, J., Mooney, H. A., Rundel, P. W.,), Chapmand and Hall, New York, 209-253.
17 Moore, T. R., 1986, Carbon dioxide evolution from subarctic peatlands in eastern Canada, Arctic Alpine Research, 18, 189-193.   DOI
18 Janssens, I. A., Lankreijer, H., Matteucci, G., Kowalski, A. S., Buchmann, N., Epron, D., Pilegaard, K., Kutsch, W., Longdoz, B., Grunwald, T., Montagnani, L., Dore, S., Rebmann, C., Moors, E. J., Grelle, A., Rannik, U., Morgenstern, K., Oltchev, S., Clement, R., Guomundsson, J., Minerbi, S., Berbigier, P., Ibrom, A., Moncrieff, J., Aubinet, M., Bernhofer, C., Jensen, N. O., Vesala, T., Granier, A., Schulze, E. D., Lindroth, A., Dolman, A. J., Jarvis, P. G., Ceulemans, R., Valentini, R., 2001, Productivity overshadows temperature in determining soil and ecosystem respiration across European forests, Global Change Biology, 7(3), 269-278.   DOI
19 IPCC, 2001, Third Assessment Report, Cambridge University Press, Cambridge, United Kingdom.
20 Boone, R. D., Nadelhoffer K. J., Canary, J. D., Kaye, J. P., 1998, Roots exert a strong influence on the temperature sensitivity of soil respiration, Nature, 396, 570-572.   DOI
21 Fierer, N., and Schimel, J. P., 2003, A proposed mechanism for the pulse in carbon dioxide production commonly observed following the rapid rewetting of a dry soil, Soil Science Society of America Journal, 67, 798-805.   DOI
22 Franzluebbers, A. J., Haney, R. L., Honeycutt, C. W. Arshad, M. A., Schomberg, H. H., Hons, F. M., 2001, Climatic influences on active fractions of soil organic matter, Soil Biology and Biochemistry, 33(7-9), 1103-1111.   DOI
23 Glinski, J., Stepniewski, W., 1985, Soil aeration and its role for plants, CRC Press, Boca Raton, FL.
24 이희춘, 홍진규, 조천호, 최병철, 오성남, 김준, 2003, 한국 해남 농경지와 대기간의 에너지와 이산화탄소의 지표 교환, 한국농림기상학회지, 5(2), 61-69.   과학기술학회마을
25 강동환, 권병혁, 김필근, 2010, 순천만 연안 생태계에서 토양의 이화학적 성질에 의한 이산화탄소 호흡 특성, 한국환경과학회지, 19(2), 217-227.   과학기술학회마을   DOI   ScienceOn
26 강동환, 김성수, 권병혁, 김일규, 2008, 고흥만 인공습지의 토양유기탄소와 이산화탄소 변동 관측, 수산해양교육학회지, 20(1), 58-67.   과학기술학회마을
27 김득수, 2007, 온실기체($CH_4,\;CO_2,\;N_2O$)의 하구언갯벌 배출량과 배출특성연구, 한국대기환경학회지, 23(2), 225-241.   과학기술학회마을   DOI
28 채남이, 김래현, 황태희, 서상욱, 이재석, 손요한, 이도원, 김준, 2005, 식물 환경 조절 시스템에서의 토양 호흡 관측 챔버법의 비교 실험, 한국농림기상학회지, 7(1), 107-114.   과학기술학회마을
29 채남이, 김준, 김동길, 이도원, 김래현, 반지연, 손요한, 2003, 폐회로 역학 챔버 시스템을 이용한 토양 이산화탄소 플럭스 관측, 한국농림기상학회지, 5(2), 94-100.   과학기술학회마을
30 최태진, 김준, 임종환, 2003, 2002년 여름철 경사진 광릉 낙엽 활엽수림에서의 이산화탄소 교환, 한국농림기상학회지, 5(2), 70-80.   과학기술학회마을
31 환경부, 2002, 토양오염공정시험법, 218.
32 Bohn, H. L., McNeal, B. L., O'Connor, G. A., 2001, Soil chemistry, 3rd edition, John wiely & Sons, Inc., 307.
33 Guo, H., Noormets, A., Zhao, B., Chen, J., Sun, G., Gu, Y., Li, B., Chen, J., 2009, Tidal effects on net ecosystem exchange of carbon in an estuarine wetland, Agricultural and Forest Meteorology, 149, 1820-1828.   DOI   ScienceOn