• 제목/요약/키워드: Efflux

검색결과 375건 처리시간 0.023초

사과 과수원에서의 토양 CO2 발생량 평가 (Estimation of Soil CO2 Efflux from an Apple Orchard)

  • 이재만;김승희;박희승;서형호;윤석규
    • 한국농림기상학회지
    • /
    • 제11권2호
    • /
    • pp.52-60
    • /
    • 2009
  • 본 실험은 사과원 토양으로부터의 $CO_2$방출량을 정량적으로 파악하고, 토양호흡과 환경인자와의 관계를 알아보기 위해 수행되었다, 실험은 경기도 수원 국립 원예특작과학원 내의 사과 '후지' 과수원에서 2007년 4월 23일$\sim$2008년 3월 31일까지 실시하였다. 자체 제작한 자동 토양호흡 측정장치(밀폐법)를 이용하여 밀폐법에 근거하여 사과원의 토양 호흡을 지속적으로 측정 하였다. 토양 호흡속도의 일변화는 일출 이후의 온도 상승과 함께 아침 7시경부터 증가하여, 온도가 가장 높은 $14{\sim}15$시경에 최대값($399.4{\sim}450.9mg$ $CO_2$ $m^2d^{-1}$)을 나타내었으며 이후 온도의 하강과 함께 감소하였다. 토양 호흡속도는 $0.82{\sim}13.65g$ $CO_2$ $m^2d^{-1}$ 범위의 계절변화를 보였고, 온도가 높고 강우가 많았던 $7{\sim}9$월에는 비교적 온도가 낮았던 $5{\sim}6$월보다 토양호흡 속도가 낮았다. 토양호흡속도는 지온($r^2=0.800$) 및 기온($r^2=0.805$)과 유의한 지수함수적 관계를 보였다. 지온과 기온에 대한 토양호흡속도의 $Q_{10}$ 값은 각각 2.0과 1.9이었으며, 연간 총 토양 호흡량은 19.6ton $CO_2$ $ha^{-1}$ 이었다.

Induction of Phase I, II and III Drug Metabolism/Transport by Xenobiotics

  • Xu Chang Jiang;Li Christina YongTao;Kong AhNg Tony
    • Archives of Pharmacal Research
    • /
    • 제28권3호
    • /
    • pp.249-268
    • /
    • 2005
  • Drug metabolizing enzymes (DMEs) play central roles in the metabolism, elimination and detoxification of xenobiotics and drugs introduced into the human body. Most of the tissues and organs in our body are well equipped with diverse and various DMEs including phase I, phase II metabolizing enzymes and phase III transporters, which are present in abundance either at the basal unstimulated level, and/or are inducible at elevated level after exposure to xenobiotics. Recently, many important advances have been made in the mechanisms that regulate the expression of these drug metabolism genes. Various nuclear receptors including the aryl hydrocarbon receptor (AhR), orphan nuclear receptors, and nuclear factor-erythoroid 2 p45-related factor 2 (Nrf2) have been shown to be the key mediators of drug-induced changes in phase I, phase II metabolizing enzymes as well as phase III transporters involved in efflux mechanisms. For instance, the expression of CYP1 genes can be induced by AhR, which dimerizes with the AhR nuclear translocator (Arnt) , in response to many polycyclic aromatic hydrocarbon (PAHs). Similarly, the steroid family of orphan nuclear receptors, the constitutive androstane receptor (CAR) and pregnane X receptor (PXR), both heterodimerize with the ret-inoid X receptor (RXR), are shown to transcriptionally activate the promoters of CYP2B and CYP3A gene expression by xenobiotics such as phenobarbital-like compounds (CAR) and dexamethasone and rifampin-type of agents (PXR). The peroxisome proliferator activated receptor (PPAR), which is one of the first characterized members of the nuclear hormone receptor, also dimerizes with RXR and has been shown to be activated by lipid lowering agent fib rate-type of compounds leading to transcriptional activation of the promoters on CYP4A gene. CYP7A was recognized as the first target gene of the liver X receptor (LXR), in which the elimination of cholesterol depends on CYP7A. Farnesoid X receptor (FXR) was identified as a bile acid receptor, and its activation results in the inhibition of hepatic acid biosynthesis and increased transport of bile acids from intestinal lumen to the liver, and CYP7A is one of its target genes. The transcriptional activation by these receptors upon binding to the promoters located at the 5-flanking region of these GYP genes generally leads to the induction of their mRNA gene expression. The physiological and the pharmacological implications of common partner of RXR for CAR, PXR, PPAR, LXR and FXR receptors largely remain unknown and are under intense investigations. For the phase II DMEs, phase II gene inducers such as the phenolic compounds butylated hydroxyanisol (BHA), tert-butylhydroquinone (tBHQ), green tea polyphenol (GTP), (-)-epigallocatechin-3-gallate (EGCG) and the isothiocyanates (PEITC, sul­foraphane) generally appear to be electrophiles. They generally possess electrophilic-medi­ated stress response, resulting in the activation of bZIP transcription factors Nrf2 which dimerizes with Mafs and binds to the antioxidant/electrophile response element (ARE/EpRE) promoter, which is located in many phase II DMEs as well as many cellular defensive enzymes such as heme oxygenase-1 (HO-1), with the subsequent induction of the expression of these genes. Phase III transporters, for example, P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and organic anion transporting polypeptide 2 (OATP2) are expressed in many tissues such as the liver, intestine, kidney, and brain, and play crucial roles in drug absorption, distribution, and excretion. The orphan nuclear receptors PXR and GAR have been shown to be involved in the regulation of these transporters. Along with phase I and phase II enzyme induction, pretreatment with several kinds of inducers has been shown to alter the expression of phase III transporters, and alter the excretion of xenobiotics, which implies that phase III transporters may also be similarly regulated in a coordinated fashion, and provides an important mean to protect the body from xenobiotics insults. It appears that in general, exposure to phase I, phase II and phase III gene inducers may trigger cellular 'stress' response leading to the increase in their gene expression, which ultimately enhance the elimination and clearance of these xenobiotics and/or other 'cellular stresses' including harmful reactive intermediates such as reactive oxygen species (ROS), so that the body will remove the 'stress' expeditiously. Consequently, this homeostatic response of the body plays a central role in the protection of the body against 'environmental' insults such as those elicited by exposure to xenobiotics.

$K^+$ 통로개방제 Pinacidil이 종양이식 생쥐에서 Tl-201의 체내분포에 미치는 영향 (Effects of Pinacidil, a Potassium-Channel Opener, on Biodistribution of Thallium-201 in Tumor-Bearing Mice)

  • 이재태;천경아;이상우;강도영;안병철;전수한;이규보;하정희
    • 대한핵의학회지
    • /
    • 제34권4호
    • /
    • pp.303-311
    • /
    • 2000
  • 목적: 생체 내에서 potassium과 유사한 역학을 보이는 thallium은 종양의 영상에 널리 사용된다. $K^+$ 통로개방제는 세포 내의 potassium을 외부로 배출되게 하는 기능이 있어 Tl-201을 이용한 종양영상에도 영향을 미칠 수 있을 것이라 생각된다. 본 연구는 강력한 $K^+$ 통로개방제의 하나인 pinacidil이 Tl-201을 이용한 종양의 국소화에 어떠한 영향을 미치는 가를 알아보기 위하여, 종양을 가진 생쥐에서 pinacidil에 의한 Tl-201의 체내분포 변화를 알아보았다. 대상 및 방법: 생쥐 유방암세포주를 이식받은 Balb/c 생쥐를 3주간 사육한 후 실험에 이용하였다. Tl-201 185 KBq를 꼬리정맥을 통해 주입한 후 일정시간에 실험동물을 희생시켜 Tl-201의 체내 분포를 알아 보았으며, pinacidil $100{\mu}g$ 투여에 따른 분포 변화를 알아보았다. 또한 Tl-201 3.7 MBq를 꼬리정맥을 통해 주입하여 Tl-201의 시간에 따른 전신 잔류율을 측정하였고, pinacidil 투여에 의한 전신 잔류율 변화를 구하였다. 결과: pinacidil 투여시 대조군에 비해 혈액 내 Tl-201의 방사능치를 약간 감소시키나 신장에서는 현저한 감소를 일으켰다. 또한 간, 근육, 및 장관의 방사능은 pinacidil 투여에 의해 변하지 않았다. 종양 내 Tl-201 섭취율 및 종양조직/혈액 무게당 섭취비는 대조군에 비해 pinacidil 투여군에서 낮았으며, Tl-201의 24시간 전신 잔류율도 pinacidil 투여군에서 낮았다. 결론: $K^+$ 통로개방제는 Tl-201의 체외 배설을 촉진시키고, 신장 섭취를 감소시켜나, 종양 섭취량도 감소시켰다. 그러므로 Tl-201 종양영상 판독시 $K^+$ 통로개방제를 사용하는 경우에는 오히려 Tl-201 종양영상의 질이 향상되기 보다는 저하될 수 있다는 사실을 고려하여야 할 것으로 생각된다.

  • PDF

곰소만 조간대에서 Salts, DIP, TDN의 물질 수지 (Mass Balance of Salts, DIP, DIN and DON in the Gomso Tidal Flat)

  • 정용훈;김영태;김기현;김소영;김병훈;양재삼
    • 한국해양학회지:바다
    • /
    • 제11권2호
    • /
    • pp.68-81
    • /
    • 2006
  • 조간대가 잘 발달된 곰소만의 생지화학적인 특성을 이해하기 위하여 용존인(DIP)과 총용존질소(TDN: DIN과 DON의 합)에 대한 계절별 물질수지를 추산하였다. 현장조사는 1999년에서 2000년 동안 계절별로 연평균 강우량을 보인 봄철(4월), 건조한 여름철(8월), 집중호우가 있었던 여름철(9월), 비가 없었던 겨울철(11월)에 각각 13시간씩 염분, 유속, 영양염 , Chlorophyll-a 등에 대한 연속 관측을 수행하였다. DIP는 봄, 건조한 여름 조사기간 중 곰소만에서 외해로 각각 $-1.10{\imes}10^6g\;P\;day^{-1},\;-4.50{\times}10^5g\;P\;day^{-1}$로 순유출(net efflux)되는 것으로 나타났다. 그 반면 집중호우가 있었던 9월과 겨울철인 11월은 곰소만 내부로 각각 $2.72{\times}10^6g\;P\;day^{-1},\;1.06{\times}10^4g\;P\;day^{-1}$로 순유입 (net influx)되는 것으로 계산되었다. 따라서 곰소만 조간대는 flux의 크기로 볼 때 봄과 여름에 대부분 연안해수에 대하여 DIP의 공급원 역할을 하고, 단기적으로 집중호우가 있을 때 한시적으로 DIP의 저장장소로서 역할을 하며, 겨울철에는 비록 그 크기는 여름철에 비하여 작지만 연안해수에서 조간대로 유입되어 저장되는 것으로 판단된다. 또한 곰소만 조간대를 유출입하는 flux들(조류에 의하여 곰소만 내외로 해수교환, 염지하수 유입, 육상기원 담수에 의한 유입) 중 겨울철을 제외하고 해수교환에 의한 flux가 연중 가장 크게 나타났다. 한편 TDN은 겨울철을 제외하고 염지하수의 유입에 의한 flux가 가장 크게 나타났다. 전체적인 유동량은 봄, 여름, 집중호우 시기에 각각 $1.38{\times}10^7g\;N\;day^{1},\;2.45{\times}10^6g\;N\;day^{-1},\;4.65{\times}10^7g\;N\;day^{-1}$이 곰소만 조간대로 순유입되어 소모 내지 저장되었고, 겨울철에는 $-1.70{\times}10^7g\;N\;day^{-1}$이 곰소만 외부로 유출되는 것으로 추산되었다. 이러한 결과로 보아 곰소만은 겨울철을 제외하고 TDN의 소모 내지 저장 장소로서 역할을 하는 것으로 판단된다.

세포 외 $\textrm{K}^{+}$의한 혈관 수축신 조절 기전: 혈관평활근 수축성과 내피세포 의존성 이완에 미치는 영향 (Regulatory Mechanism of Vascular Contractility by Extracellular $\textrm{K}^{+}$: Effect on Endothelium-Dependent Relaxation and Vascular Smooth Muscle Contractility)

  • 유지영;설근희;서석효;안재호
    • Journal of Chest Surgery
    • /
    • 제37권3호
    • /
    • pp.210-219
    • /
    • 2004
  • 외부 자극에 의하여 세포 내 $Ca^2$$^{+}$이 증가하면 세포 내 $K^{+}$이 유출되어 세포 외 $K^{+}$ 농도는 수 mM 범위에서 증가할 수 있다. 이러한 세포 외 $K^{+}$의 증가가 혈관 수축성에 미치는 영향을 규명하고자, 세포 외 $K^{+}$가 혈관평활근 수축성, 내피세포 의존성 이완과 혈관내피세포 $Ca^2$$^{+}$ 농도에 미치는 영향을 알아보고자 하였다. 토끼에서 분리한 경동맥, 상장간막동맥 분지, 기저동맥과 쥐의 대동맥에서 등장성 수축을 기록하였으며 배양한 쥐의 대동맥 혈관내피세포와 인간 제대정맥 내피세포에서 세포 내 $Ca^2$$^{+}$ 변화를 측정하였다. 세포 외 $K^{+}$ 농도를 6에서 12 mM로 증가하는 경우 도관동맥인 토끼 경동맥은 수축성에 변화가 없는 반면 저항혈관인 기저동맥과 상장간막동맥분지는 이완하였다. 이러한 $K^{+}$ 유발 이완은 혈관 종류에 따라 차이가 있었는데 기저동맥에서는 세포 외 $K^{+}$ 농도를 6에서 12 mM로 증가하였을 때보다 세포 외 $K^{+}$ 농도를 1에서 3 mM로 증가하였을 때 더 크게 이완하였으며 상장간막동맥의 분지에서는 반대로 세포 외 $K^{+}$ 농도를 6에서 12 mM로 증가하였을 때 더 크게 이완하였다. 그리고 세포 외 $K^{+}$ 농도를 6에서 12 mM로 증가하였을 때의 이완은 $Ba^2$$^{+}$에 의하여 억제되는 반면 1에서 3 mM로 증가에 의한 이완은 억제되지 않았다. 쥐 대동맥에서도 토끼 경동맥과 동일한 효과가 관찰되었는데 세포 외 $K^{+}$ 농도를 6 mM에서 12 mM로 변화시켜도 norepinephrine혹은 prostaglandin $F_2$$_{\alpha}$에 의한 수축력은 유의한 변화가 없었다. 또한 세포 외 $K^{+}$ 농도를 점차 증가시키는 경우 12 mM 이상 증가가 되면 혈관평활근이 수축하기 시작하였지만 12 mM 이하의 증가에 의해서는 혈관평활근의 수축력은 증가하지 않았다. 한편 쥐 대동맥에서 acetylcholine에 의하여 유발된 내피세포 의존성 이완은 세포 외 $K^{+}$ 농도를 정상 6 mM에서 12 mM로 증가시키면 억제되었다. 한편 배양한 쥐 대동맥 내피세포에서는 acetylcholine 혹은 ATP에 의하여 세포 내 $Ca^2$$^{+}$이 증가하였다. 증가한 세포 내 $Ca^2$$^{+}$은 세포 외 $K^{+}$농도를 6 mM에서 12 mM로 증가시키면 가역적 및 농도 의존적으로 감소하였다. 세포 외 $K^{+}$ 증가에 의한 세포 내 $Ca^2$$^{+}$ 억제 효과는 인간 제대정맥 내피세포에서도 관찰되었다. 그리고 세포 외 $K^{+}$ 증가에 의한 내피세포 의존성 이완의 억제효과는 $Na^{+}$- $K^{+}$ pump 억제제인 ouabain과 $Na^{+}$-C $a^2$$^{+}$exchanger 억제제인 N $i^2$$^{+}$에 의하여 억제되었다. 이러한 실험 결과로 미루어 세포 외 $K^+$의 증가는 저항혈관 평활근을 이완시키는데 그 기전은 혈관 종류에 따라 차이가 있었다. 그리고 세포 외 $K^{+}$의 증가는 혈관내피세포 $Ca^2$$^{+}$을 감소시켜 내피세포 의존성 이완을 억제하는데 이는 $Na^2$$^{+}$- $K^2$$^{+}$pump를 활성화시켜 일어나는 것으로 생각된다.