• Title/Summary/Keyword: Efflux

Search Result 375, Processing Time 0.019 seconds

Revisiting Apoplastic Auxin Signaling Mediated by AUXIN BINDING PROTEIN 1

  • Feng, Mingxiao;Kim, Jae-Yean
    • Molecules and Cells
    • /
    • v.38 no.10
    • /
    • pp.829-835
    • /
    • 2015
  • It has been suggested that AUXIN BINDING PROTEIN 1 (ABP1) functions as an apoplastic auxin receptor, and is known to be involved in the post-transcriptional process, and largely independent of the already well-known SKP-cullin-F-box-transport inhibitor response (TIR1) /auxin signaling F-box (AFB) ($SCF^{TIR1/AFB}$) pathway. In the past 10 years, several key components downstream of ABP1 have been reported. After perceiving the auxin signal, ABP1 interacts, directly or indirectly, with plasma membrane (PM)-localized transmembrane proteins, transmembrane kinase (TMK) or SPIKE1 (SPK1), or other unidentified proteins, which transfer the signal into the cell to the Rho of plants (ROP). ROPs interact with their effectors, such as the ROP interactive CRIB motif-containing protein (RIC), to regulate the endocytosis/exocytosis of the auxin efflux carrier PIN-FORMED (PIN) proteins to mediate polar auxin transport across the PM. Additionally, ABP1 is a negative regulator of the traditional $SCF^{TIR1/AFB}$ auxin signaling pathway. However, Gao et al. (2015) very recently reported that ABP1 is not a key component in auxin signaling, and the famous abp1-1 and abp1-5 mutant Arabidopsis lines are being called into question because of possible additional mutantion sites, making it necessary to reevaluate ABP1. In this review, we will provide a brief overview of the history of ABP1 research.

The Effects of Prolactin and Vasopressin on the Regulation of Amniotic Fluid Volume and Its $Na^{+}$ Concentration through the Membrane Surrounding Amniotic Fluid

  • Kim, Dong-Wook;Kim, Sang-Jeong;Sung, Ho-Kyung
    • The Korean Journal of Physiology
    • /
    • v.29 no.1
    • /
    • pp.81-89
    • /
    • 1995
  • The effects of prolactin and vasopressin on the regulation of amniotic fluid (AF) volume and its $Na^{+}$ concentration $([Na^{+}])$ through the membrane surrounding the AF during increase in AF volume due to fetal urination were studied. About 70% of AF volume was replaced with normal isotonic saline solution. Isotonic saline solution (0.5 ml) containing Censored and LiCl was introduced into each amniotic sac. Vasopressin (25 ng/ml) or prolactin (1 mg/ml) of AF was then injected into experimental amniotic sac. The concentrations of Congored, $Li^{+}$, and $Na^{+}$ were measured at 30 and 60 min intervals after injection. Af samples with decreased Censored concentration ([CR]) during the period of 30 - 60 min were analyzed. The percentage change of $[Na^{+}]$ and the rate of $Li^{+}$ movement during this period were calculated, and the effects of vasopressin and prolactin on them were evaluated. Fellowing results were obtained: 1. The rate of reduction of [CR] in the AF was retarded by vasopressin or prolactin injection. 2. The rate of reduction of $[Li^{+}]$ in the AF was also retarded by vasopressin or prolactin injection. 3. The rate of reduction of $[Li^{+}]$ in the AF was less retarded by vasopressin than that of [CR]. 4. $[Na^{+}]$ changed to approach to the normal level, but this was markedly retarded by prolactin injection. 5. Direction of $Li^{+}$ movement was correlated with the change in $[Na^{+}]$ but it always moved out of the amniotic sac even when the $[Na^{+}]$ increased in vasopressin injected AF. From the above results, it is suggested that vasopressin in the AF triggers the fetus to urinate, and then the membranes surrounding the AF regulate osmolarity by efflux of $Na^{+}$. We suggest that prolactin facilitates water outflow across the amniotic membrane during increase in AF volume, in contrast to a constant volume, whereas regulation of $[Na^{+}]$ is partly restricted by prolactin.

  • PDF

Effects of Nimodipine on the Pharmacokinetics of Warfarin in Rats: A Possible Role of P-glycoprotein and CYP3A4 Inhibition by Nimodipine (와파린의 약물동태학에 니모디핀의 영향)

  • Moon, Hong Seop;Lee, Chong Ki;Burm, Jin Pil
    • Korean Journal of Clinical Pharmacy
    • /
    • v.23 no.3
    • /
    • pp.206-212
    • /
    • 2013
  • Purpose: The aim of this study was to investigate the effect of nimodipine on the pharmacokinetics of warfarin after oral and intravenous administration of warfarin in rats. Methods: Warfarin was administered orally (0.2 mg/kg) or intravenously (0.05 mg/kg) without or with oral administration of nimodipine (0.5 or 2 mg/kg) in rats. The effect of nimodipine on the P-glycoprotein as well as cytochrome P450 (CYP) 3A4 activity was also evaluated. Results: Nimodipine inhibited CYP3A4 enzyme activity with 50% inhibition concentration ($IC_{50}$) of $10.2{\mu}M$. Compared to those animals in the oral control group (warfarin without nimodipine), the area under the plasma concentration-time curve (AUC) of warfarin was significantly greater (0.5 mg/kg, P<0.05; 2 mg/kg, P<0.01) by 31.3-57.6%, and the peak plasma concentration ($C_{max}$) was significantly higher (2 mg/kg, P<0.05) by 29.4% after oral administration of warfarin with nimodipine, respectively. Consequently, the relative bioavailability of warfarin increased by 1.31- to 1.58-fold and the absolute bioavailability of warfarin with nimodipine was significantly greater by 64.1-76.9% compared to that in the control group (48.7%). In contrast, nimodipine had no effect on any pharmacokinetic parameters of warfarin given intravenously. Conclusion: Therefore, the enhanced oral bioavailability of warfarin may be due to inhibition of CYP 3A4-mediated metabolism rather than P-glycoprotein-mediated efflux by nimodipine.

Pharmacokinetic Interaction between Nifedipine and Quercetin in Rabbits (니페디핀과 켈세틴의 토끼에서의 약물동태학적 상호작용)

  • Han, Hyo-Kyung;Lee, Il-Kwun;Choi, Jun-Shik
    • Journal of Pharmaceutical Investigation
    • /
    • v.34 no.4
    • /
    • pp.283-288
    • /
    • 2004
  • The pharmacokinetics of nifedipine was studied after oral coadministration of nifedipine (5 mg/kg) with quercetin (1.5, 7.5, 15 and 30 mg/kg, respectively) and 0.5 h or 3days pretreatment with quercetin (1.5 and 7.5mg/kg) in rabbits. Pretreatment of quercetin significantly (p<0.05, at 0.5 h; p<0.01, at 3 days) increased the plasma concentration of nifedipine, but not significant in coadministraiton. The area under the plasma concentration-time curve (AUC) and the peak concentration $(C_{max})$ of nifedipine pretreated with quercetin were increased significantly (p<0.05, at 0.5 h; p<0.01, at 3 days) compared to the control. By coadministration of quercetin, only 7.5 mg/kg of quercetin increased plasma AUC and $C_{max}$ of nifedipine significantly (p<0.05) compared to the control. Plasma AUC of intravenous nifedipine (1 mg/kg) is $4235\;{\pm}\;1192\;ng/ml{\cdot}hr$. Pretreatment of quercetin significantly (p<0.05, at 0.5 h; p<0.01, at 3 days) increased the absolute bioavailability (AB%) of nifedipine to 23.9-29.2% compared to the control (17.8%). Coadministration of quercetin showed no significant effect on the AB% of nifedipine except for 7.5 mg/kg. It is suggested that quercetin alters disposition of nifedipine by inhibition of P-glycoprotein efflux pump and its first-pass metabolism. The dosage of nifedipine should be adjusted when it is administered chronically with quercetin in a clinical situation.

Effect of ArsA, Arsenite-Specific ATPase, on Inhibition of Cell Division in Escherichia coli

  • Lee, Sung-Jae;Lee, Soo-Chan;Choi, Seung-Ho;Chung, Mi-Kyung;Rhie, Ho-Gun;Lee, Ho-Sa
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.5
    • /
    • pp.825-830
    • /
    • 2001
  • Escherichia coli, which harbored the ars operon from a plasmid pMH12 of Klebsiella oxytoca D12, showed filamentation due to the expression of ars genes in the presence of arsenite. The continued DNA replication in the absence of cell division was revealed, since nucleoids abound with DAPI appeared to be arranged in chains. In contrast to overexpression of arsA, its frame-shift mutant and knock-out mutant lost filamentation in the presence of arsenite, which suggested that ars-induced division block was dependent on expression of arsA. ArsA-induced division inhibition was not a consequence of an inhibition of DNA replication, and the inability of arsenite to induce an SOS response indicated that arsA-mediated division inhibition was dependent on the expression of the gene product encoded by the minB operon. ArsA is a peripheral membrane protein with an ATP-binding domain, which is homologous to MinD that requires ATP-dependent efflux. These results suggested that ArsA could possibly recruit MinC to the membrane and modulate cytoplasmic FtsZ to block assembly at the middle of the cell.

  • PDF

Increased Sensitivity to Chloramphenicol by Inactivation of manB in Streptomyces coelicolor

  • Rajesh, Thangamani;Song, Eunjung;Lee, Bo-Rahm;Park, Sung-Hee;Jeon, Jong-Min;Kim, Eunjung;Sung, Changmin;Lee, Jae-Hun;Yoo, Dongwon;Park, Hyung-Yeon;Kim, Yun-Gon;Kim, Byung-Gee;Yang, Yung-Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1324-1329
    • /
    • 2012
  • Phosphomannomutase (ManB) is involved in the biosynthesis of GDP-mannose, which is vital for numerous processes such as synthesis of carbohydrates, production of alginates and ascorbic acid, and post-translational modification of proteins. Here, we discovered that a deletion mutant of manB (BG101) in Streptomyces coelicolor (S. coelicolor) showed higher sensitivity to bacteriostatic chloramphenicol (CM) than the wild-type strain (M145), along with decreased production of CM metabolites. Deletion of manB also decreased the mRNA expression level of drug efflux pumps (i.e., cmlR1 and cmlR2) in S. coelicolor, resulting in increased sensitivity to CM. This is the first report on changes in antibiotic sensitivity to CM by deletion of one glycolysis-related enzyme in S. coelicolor, and the results suggest different approaches for studying the antibiotic-resistant mechanism and its regulation.

The Changes of P-glycoprotein Activity by Interferon-γ and Tumor Necrosis Factor-α in Primary and Immortalized Human Brain Microvascular Endothelial Cells

  • Lee, Na-Young;Rieckmann, Peter;Kang, Young-Sook
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.293-298
    • /
    • 2012
  • The purpose of this study was to investigate the modification of expression and functionality of the drug transporter P-glycoprotein (P-gp) by tumor necrosis factor-alpha (TNF-${\alpha}$) and interferon-gamma (IFN-${\gamma}$) at the blood-brain barrier (BBB). We used immortalized human brain microvessel endothelial cells (iHBMEC) and primary human brain microvessel endothelial cells (pHBMEC) as in vitro BBB model. To investigate the change of p-gp expression, we carried out real time PCR analysis and Western blotting. To test the change of p-gp activity, we performed rhodamin123 (Rh123) accumulation study in the cells. In results of real time PCR analysis, the P-gp mRNA expression was increased by TNF-${\alpha}$ or IFN-${\gamma}$ treatment for 24 hr in both cell types. However, 48 hr treatment of TNF-${\alpha}$ or IFN-${\gamma}$ did not affect P-gp mRNA expression. In addition, co-treatment of TNF-${\alpha}$ and IFN-${\gamma}$ markedly increased the P-gp mRNA expression in both cells. TNF-${\alpha}$ or IFN-${\gamma}$ did not influence P-gp protein expression whatever the concentration of cytokines or duration of treatment in both cells. However, P-gp expression was increased after treatments of both cytokines together in iHBMEC cells only compared with untreated control. Furthermore, in both cell lines, TNF-${\alpha}$ or IFN-${\gamma}$ induced significant decrease of P-gp activity for 24 hr treatment. And, both cytokines combination treatment also decreased significantly P-gp activity. These results suggest that P-gp expression and function at the BBB is modulated by TNF-${\alpha}$ or/and IFN-${\gamma}$. Therefore, the distribution of P-gp depending drugs in the central nervous system can be modulated by neurological inflammatory diseases.

Chemosensitizing effect and mechanism of imperatorin on the anti-tumor activity of doxorubicin in tumor cells and transplantation tumor model

  • Liang, Xin-li;Ji, Miao-miao;Liao, Zheng-gen;Zhao, Guo-wei;Tang, Xi-lan;Dong, Wei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.3
    • /
    • pp.145-155
    • /
    • 2022
  • Multidrug resistance of tumors has been a severe obstacle to the success of cancer chemotherapy. The study wants to investigate the reversal effects of imperatorin (IMP) on doxorubicin (DOX) resistance in K562/DOX leukemia cells, A2780/Taxol cells and in NOD/SCID mice, to explore the possible molecular mechanisms. K562/DOX and A2780/Taxol cells were treated with various concentrations of DOX and Taol with or without different concentrations of IMP, respectively. K562/DOX xenograft model was used to assess anti-tumor effect of IMP combined with DOX. MTT assay, Rhodamine 123 efflux assay, RT-PCR, and Western blot analysis were determined in vivo and in vitro. Results showed that IMP significantly enhanced the cytotoxicity of DOX and Taxol toward corresponding resistance cells. In vivo results illustrated both the tumor volume and tumor weight were significantly decreased after 2-week treatment with IMP combined with DOX compared to the DOX alone group. Western blotting and RT-PCR analyses indicated that IMP downregulated the expression of P-gp in K562/DOX xenograft tumors in NOD/SCID mice. We also evaluated glycolysis and glutamine metabolism in K562/DOX cells by measuring glucose consumption and lactate production. The results revealed that IMP could significantly reduce the glucose consumption and lactate production of K562/DOX cells. Furthermore, IMP could also remarkably repress the glutamine consumption, α-KG and ATP production of K562/DOX cells. Thus, IMP may sensitize K562/DOX cells to DOX and enhance the antitumor effect of DOX in K562/DOX xenograft tumors in NOD/SCID mice. IMP may be an adjuvant therapy to mitigate the multidrug resistance in leukemia chemotherapy.

Metformin alleviates chronic obstructive pulmonary disease and cigarette smoke extract-induced glucocorticoid resistance by activating the nuclear factor E2-related factor 2/heme oxygenase-1 signaling pathway

  • Tao, Fulin;Zhou, Yuanyuan;Wang, Mengwen;Wang, Chongyang;Zhu, Wentao;Han, Zhili;Sun, Nianxia;Wang, Dianlei
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.26 no.2
    • /
    • pp.95-111
    • /
    • 2022
  • Chronic obstructive pulmonary disease (COPD) is an important healthcare problem worldwide. Often, glucocorticoid (GC) resistance develops during COPD treatment. As a classic hypoglycemic drug, metformin (MET) can be used as a treatment strategy for COPD due to its anti-inflammatory and antioxidant effects, but its specific mechanism of action is not known. We aimed to clarify the role of MET on COPD and cigarette smoke extract (CSE)-induced GC resistance. Through establishment of a COPD model in rats, we found that MET could improve lung function, reduce pathological injury, as well as reduce the level of inflammation and oxidative stress in COPD, and upregulate expression of nuclear factor E2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), multidrug resistance protein 1 (MRP1), and histone deacetylase 2 (HDAC2). By establishing a model of GC resistance in human bronchial epithelial cells stimulated by CSE, we found that MET reduced secretion of interleukin-8, and could upregulate expression of Nrf2, HO-1, MRP1, and HDAC2. MET could also increase the inhibition of MRP1 efflux by MK571 significantly, and increase expression of HDAC2 mRNA and protein. In conclusion, MET may upregulate MRP1 expression by activating the Nrf2/HO-1 signaling pathway, and then regulate expression of HDAC2 protein to reduce GC resistance.

A Study on Controlling Efflux Sediment Diffusion by Jetty Construction at Small Estuary (소규모 하구에서 토사유출 확산제어에 관한 연구)

  • Park, Sang Kil;Park, Hyun Su;Yoon, Jong Su;Lee, Si Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.483-491
    • /
    • 2009
  • In this study, a jetty construction is taken into account for the reduction of sediment diffusive concentration incoming from the upstream river due to the urbanization and industrial development and to minimize the effects on the coastal ecosystems. The field observation and numerical calculation are conducted to analyze the diffusion zone of sediment concentration in the small estuary and coastal area. The specification of the installed jetty which is able to control the sediment concentration was decided based on the prediction of the dispersion area changes in space and time. The selected size and layout for the jetty design were examined for the dispersion zone by numerical calculation and field observation. As a result, the jetties constructed in the estuary retarded the dispersion rate of sediment concentration, so that the effect area of sediment dispersion was obviously decreased. In addition, the measured field data indicated that the sediment deposition in the inside of dikes could be controlled and the right side area of jetties could be preserved without influx sediment diffusion.