DOI QR코드

DOI QR Code

Increased Sensitivity to Chloramphenicol by Inactivation of manB in Streptomyces coelicolor

  • Rajesh, Thangamani (Department of Microbial Engineering, College of Engineering, Konkuk University) ;
  • Song, Eunjung (School of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Bo-Rahm (School of Chemical and Biological Engineering, Seoul National University) ;
  • Park, Sung-Hee (School of Chemical and Biological Engineering, Seoul National University) ;
  • Jeon, Jong-Min (Department of Microbial Engineering, College of Engineering, Konkuk University) ;
  • Kim, Eunjung (School of Chemical and Biological Engineering, Seoul National University) ;
  • Sung, Changmin (School of Chemical and Biological Engineering, Seoul National University) ;
  • Lee, Jae-Hun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Yoo, Dongwon (School of Chemical and Biological Engineering, Seoul National University) ;
  • Park, Hyung-Yeon (Bio-MAX Institute, Seoul National University) ;
  • Kim, Yun-Gon (Department of Chemical Engineering, College of Engineering, Soongsil University) ;
  • Kim, Byung-Gee (School of Chemical and Biological Engineering, Seoul National University) ;
  • Yang, Yung-Hun (Department of Microbial Engineering, College of Engineering, Konkuk University)
  • Received : 2012.03.23
  • Accepted : 2012.05.31
  • Published : 2012.10.28

Abstract

Phosphomannomutase (ManB) is involved in the biosynthesis of GDP-mannose, which is vital for numerous processes such as synthesis of carbohydrates, production of alginates and ascorbic acid, and post-translational modification of proteins. Here, we discovered that a deletion mutant of manB (BG101) in Streptomyces coelicolor (S. coelicolor) showed higher sensitivity to bacteriostatic chloramphenicol (CM) than the wild-type strain (M145), along with decreased production of CM metabolites. Deletion of manB also decreased the mRNA expression level of drug efflux pumps (i.e., cmlR1 and cmlR2) in S. coelicolor, resulting in increased sensitivity to CM. This is the first report on changes in antibiotic sensitivity to CM by deletion of one glycolysis-related enzyme in S. coelicolor, and the results suggest different approaches for studying the antibiotic-resistant mechanism and its regulation.

Keywords

References

  1. Abu-Qarn, M., J. Eichler, and N. Sharon. 2008. Not just for Eukarya anymore: Protein glycosylation in Bacteria and Archaea. Curr. Opin. Struct. Biol. 18: 544-550. https://doi.org/10.1016/j.sbi.2008.06.010
  2. Becker, D. J. and J. B. Lowe. 2003. Fucose: Biosynthesis and biological function in mammals. Glycobiology 13: 41R-53R. https://doi.org/10.1093/glycob/cwg054
  3. Buchanan, J. T., J. A. Stannard, X. Lauth, V. E. Ostland, H. C. Powell, M. E. Westerman, and V. Nizet. 2005. Streptococcus iniae phosphoglucomutase is a virulence factor and a target for vaccine development. Infect. Immun. 73: 6935-6944. https://doi.org/10.1128/IAI.73.10.6935-6944.2005
  4. Conklin, P. L., S. R. Norris, G. L. Wheeler, E. H. Williams, N. Smirnoff, and R. L. Last. 1999. Genetic evidence for the role of GDP-mannose in plant ascorbic acid (vitamin C) biosynthesis. Proc. Natl. Acad. Sci. USA 96: 4198-4203. https://doi.org/10.1073/pnas.96.7.4198
  5. Elbein, A. D. 1984. Inhibitors of the biosynthesis and processing of N-linked oligosaccharides. CRC Crit. Rev. Biochem. 16: 21-49. https://doi.org/10.3109/10409238409102805
  6. Foulongne, V., G. Bourg, C. Cazevieille, S. Michaux-Charachon, and D. O'Callaghan. 2000. Identification of Brucella suis genes affecting intracellular survival in an in vitro human macrophage infection model by signature-tagged transposon mutagenesis. Infect. Immun. 68: 1297-1303. https://doi.org/10.1128/IAI.68.3.1297-1303.2000
  7. Garami, A. and T. Ilg. 2001. The role of phosphomannose isomerase in Leishmania mexicana glycoconjugate synthesis and virulence. J. Biol. Chem. 276: 6566-6575. https://doi.org/10.1074/jbc.M009226200
  8. Garami, A., A. Mehlert, and T. Ilg. 2001. Glycosylation defects and virulence phenotypes of Leishmania mexicana phosphomannomutase and dolicholphosphate-mannose synthase gene deletion mutants. Mol. Cell Biol. 21: 8168-8183. https://doi.org/10.1128/MCB.21.23.8168-8183.2001
  9. Gust, B., G. L. Challis, K. Fowler, T. Kieser, and K. F. Chater. 2003. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc. Natl. Acad. Sci. USA 100: 1541-1546. https://doi.org/10.1073/pnas.0337542100
  10. Huang, J., C. J. Lih, K. H. Pan, and S. N. Cohen. 2001. Global analysis of growth phase responsive gene expression and regulation of antibiotic biosynthetic pathways in Streptomyces coelicolor using DNA microarrays. Genes Dev. 15: 3183-3192. https://doi.org/10.1101/gad.943401
  11. Jiang, H., H. Ouyang, H. Zhou, and C. Jin. 2008. GDPmannose pyrophosphorylase is essential for cell wall integrity, morphogenesis and viability of Aspergillus fumigatus. Microbiology 154: 2730-2739. https://doi.org/10.1099/mic.0.2008/019240-0
  12. Joo, H. S., Y. H. Yang, C. S. Lee, J. H. Kim, and B. G. Kim. 2007. Fragmentation study on butanolides with tandem mass spectrometry and its application for the screening of ScbRcaptured quorum sensing molecules in Streptomyces coelicolor A3(2). Rapid. Commun. Mass. Spectrom. 21: 764-770. https://doi.org/10.1002/rcm.2902
  13. Kieser, T., M. J. Bibb, M. J. Buttner, K. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics, pp. 537-549. John Innes Centre, Norwich Research Park, Colney, Norwich, UK.
  14. Lai, X. H., R. L. Shirley, L. Crosa, D. Kanistanon, R. Tempel, R. K. Ernst, et al. 2010. Mutations of Francisella novicida that alter the mechanism of its phagocytosis by murine macrophages. PLoS One 5: e11857. https://doi.org/10.1371/journal.pone.0011857
  15. Levander, F. and P. Radstrom. 2001. Requirement for phosphoglucomutase in exopolysaccharide biosynthesis in glucoseand lactose-utilizing Streptococcus thermophilus. Appl. Environ. Microbiol. 67: 2734-2738. https://doi.org/10.1128/AEM.67.6.2734-2738.2001
  16. McCarthy, T. R., J. B. Torrelles, A. S. MacFarlane, M. Katawczik, B. Kutzbach, L. E. Desjardin, et al. 2005. Overexpression of Mycobacterium tuberculosis manB, a phosphomannomutase that increases phosphatidylinositol mannoside biosynthesis in Mycobacterium smegmatis and mycobacterial association with human macrophages. Mol. Microbiol. 58: 774-790. https://doi.org/10.1111/j.1365-2958.2005.04862.x
  17. Mosher, R. H., D. J. Camp, K. Yang, M. P. Brown, W. V. Shaw, and L. C. Vining. 1995. Inactivation of chloramphenicol by Ophosphorylation. A novel resistance mechanism in Streptomyces venezuelae ISP5230, a chloramphenicol producer. J. Biol. Chem. 270: 27000-27006. https://doi.org/10.1074/jbc.270.45.27000
  18. Parish, T., J. Liu, H. Nikaido, and N. G. Stoker. 1997. A Mycobacterium smegmatis mutant with a defective inositol monophosphate phosphatase gene homolog has altered cell envelope permeability. J. Bacteriol. 179: 7827-7833.
  19. Stevenson, G., K. Andrianopoulos, M. Hobbs, and P. R. Reeves. 1996. Organization of the Escherichia coli K-12 gene cluster responsible for production of the extracellular polysaccharide colanic acid. J. Bacteriol. 178: 4885-4893.
  20. Strohl, W. R. 1997. Biotechnology of Antibiotics, 2nd Ed. Marcel Dekker, Inc.
  21. Thuy, M. L., M. K. Kharel, R. Lamichhane, H. C. Lee, J. W. Suh, K. Liou, and J. K. Sohng. 2005. Expression of 2-deoxyscyllo-inosose synthase (kanA) from kanamycin gene cluster in Streptomyces lividans. Biotechnol. Lett. 27: 465-470. https://doi.org/10.1007/s10529-005-2222-y
  22. Vecchione, J. J., B. Alexander Jr., and J. K. Sello. 2009. Two distinct major facilitator superfamily drug efflux pumps mediate chloramphenicol resistance in Streptomyces coelicolor. Antimicrob. Agents Chemother. 53: 4673-4677. https://doi.org/10.1128/AAC.00853-09
  23. Wehmeier, S., A. S. Varghese, S. S. Gurcha, B. Tissot, M. Panico, P. Hitchen, et al. 2009. Glycosylation of the phosphate binding protein, PstS, in Streptomyces coelicolor by a pathway that resembles protein O-mannosylation in eukaryotes. Mol. Microbiol. 71: 421-433. https://doi.org/10.1111/j.1365-2958.2008.06536.x
  24. West, N. P., H. Jungnitz, J. T. Fitter, J. D. McArthur, C. A. Guzman, and M. J. Walker. 2000. Role of phosphoglucomutase of Bordetella bronchiseptica in lipopolysaccharide biosynthesis and virulence. Infect. Immun. 68: 4673-4680. https://doi.org/10.1128/IAI.68.8.4673-4680.2000
  25. Yang, Y. H., E. Song, S. H. Park, J. N. Kim, K. Lee, E. Kim, et al. 2010. Loss of phosphomannomutase activity enhances actinorhodin production in Streptomyces coelicolor. Appl. Microbiol. Biotechnol. 86: 1485-1492. https://doi.org/10.1007/s00253-009-2368-y
  26. Ye, R. W., N. A. Zielinski, and A. M. Chakrabarty. 1994. Purification and characterization of phosphomannomutase/phosphoglucomutase from Pseudomonas aeruginosa involved in biosynthesis of both alginate and lipopolysaccharide. J. Bacteriol. 176: 4851-4857.
  27. Zhou, D., D. S. Stephens, B. W. Gibson, J. J. Engstrom, C. F. McAllister, F. K. Lee, and M. A. Apicella. 1994. Lipooligosaccharide biosynthesis in pathogenic Neisseria. Cloning, identification, and characterization of the phosphoglucomutase gene. J. Biol. Chem. 269: 11162-11169.

Cited by

  1. Disruption of the GDP-mannose synthesis pathway in Streptomyces coelicolor results in antibiotic hyper-susceptible phenotypes vol.164, pp.4, 2018, https://doi.org/10.1099/mic.0.000636