• Title/Summary/Keyword: Effluent treatment

Search Result 1,092, Processing Time 0.026 seconds

Occurrence of Organophosphorus Flame Retardants (OPFRs) in Nakdong River Basin : Mainstreams, Tributaries and STP Effluents (낙동강 수계에서의 유기인계 난연제류 검출 현황 : 본류, 지류 및 하수처리장 방류수)

  • Seo, Chang-Dong;Son, Hee-Jong;Choi, Jin-Taek;Ryu, Dong-Choon;Yoo, Pyung-Jong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.7
    • /
    • pp.396-403
    • /
    • 2015
  • This study was investigated occurrence and distribution patterns of organophosphorus flame retardants (OPFRs) in Nakdong River basin (mainstream, tributaries and sewage treatment plant (STP) effluents). 3 (TCEP, TCPP and TBEP) out of 9 OPFRs were detected in 6 out of 20 sampling sites (mainstream and tributaries), The TCPP and TBEP concentration levels in mainstream samples were ND~114.9 ng/L ng/L and ND~49.1 ng/L, respectively. And the TCEP, TCPP and TBEP concentration levels in tributary samples were ND~1,865.3 ng/L, ND~519.2 ng/L and ND~210.4 ng/L, respectively. 4 (TBP, TCEP, TCPP and TBEP) out of 9 OPFRs were detected in effluents of 11 STPs around the Nakdong River basin. The TBP, TCEP, TCPP and TBEP concentration levels in 11 STP effluents were ND~458.5 ng/L, ND~2,932.7 ng/L, ND~1,320.7 ng/L and ND~655.2 ng/L, respectively. According to the sampling season, change ranges of distribution patterns and detected concentrations of OPFRs were highly variable in the same sampling sites.

Reduction of the Nitrogen in the Secondary Effluent by the Hybrid Sequential Aerobic-Anoxic Natural System (자연현상을 이용한 질산화-탈질공정에 의한 하수처리장 유출수의 질소제거)

  • Kim, Young-Chul;Chung, Paul-Gene;An, Ik-Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.3
    • /
    • pp.323-329
    • /
    • 2005
  • In this paper, performance of a hybrid sequential aerobic-anaerobic natural system was investigated. Continuous aerobic and anoxic conditions were created by alternatively placing waste stabilization pond (WSP) and wale. hyacinth pond (WHP). Two pilot-scale treatment lines were built and operated; The first consists of WSP integrated with WHP and the second of WSP connected with Dark Pond(DP), namely control system ponds which were used to examine the effects of water hyacinth on nitrification and de-nitrification. The overall performance in nitrogen was 86% reduction in WSP-WHP and 36% in WSP-control pond system. Nitrogen was mostly removed by nitrification and de-nitrification which simultaneously occurred in the same water hyacinth ponds. For the de-nitrification, benthic layer was found out to be adequate support as a carbon source. In addition, WSP-WHP system was very effective in reducing phosphorus. Overall P removal efficiency in WSP-WHP is 81%, while it is only 16% in WSP-control. difference in phosphorus reduction between those two systems is thought to be caused by the plants and probably their roots producing extra-cellular materials, but these aspects need to be further studied.

Evaluation of the Effect of Flocculator Rotation Direction in Floccualation Basin on Hydrodynamic Behavior using CFD (CFD를 이용한 플록큐레이터 회전방향에 따른 플록형성지 유동 평가)

  • Cho, Young-Man;Yoo, Soo-Jeon;Roh, Jae-Soon;Kim, taek-Jun;Kim, Chang-Won
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.5
    • /
    • pp.364-370
    • /
    • 2009
  • With time, the stable management of turbidity is becoming more important in the water treatment process. So optimization of flocculation is important for the improvement of the sedimentation efficiency. we evaluated the hydrodynamic behavior in the rotation direction (clock-wise, counterclock-wise) of the flocculator in the flocculation basin using Computational Fluid Dynamics (CFD). The results of the CFD simulation, in cases where flocculators rotate in a clockwise direction, a stronger flow is formed near the surface of the water where the rotating direction and current of flow correspond. The variance and standard deviation of the flux are about 8.5 and 2.9 respectively. In contrast, in the case of a counterclockwise direction, a stronger flow is formed near the bottom of the basin. The variance and standard deviation of the flux are about 5.3 and 2.3, respectively. The effluent flux is affected more by the third flocculator spin than the first and second flocculator spins. The third flocculator spinning in the counterclockwise direction is better for the uniform flow of the sedimentation basin than the third flocculator spinning in the clockwise direction

Removal of Endocrine Disrupting Chemicals in Wastewater by Nitrifying Sludge (질산화 슬러지에 의한 폐수 중의 내분비계 장애물질 제거)

  • Lim, Kyoung Jo;Hong, Soon Ho;Chung, Jin Suk;Yoo, Ik-Keun
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.775-780
    • /
    • 2009
  • The efficacy of nitrifying sludge existed in biological nutrient removal process was examined for possible removal of endocrine disrupting chemical(EDC) in the effluent of wastewater treatment plant. Some of ammonia oxidizing bacteria causes ammonia oxidation mediated by ammonia monooxygenase(AMO) activity, which has low substrate specificity resulting in cometablic degradation of several chemicals. In this study, the removal of three model EDCs such as bisphenol A(BPA), nonylphenol(NP) and dibutyl phthalate(DBP) was studied in batch cultures using nitrifying sludge, BOD-oxidizing sludge with low nitrifying activity, and sterilized sludge. Nitrifying sludge showed higher initial removal rates in all batches of three EDCs when it was fed with ammonium as an energy source. The acclimation time was required for the removal of EDCs in batches using BOD-oxidizing sludge or nitritefed nitrifying sludge. That retardation seemed to attribute to the slow growth of cells using the EDCs while ammonium-fed nitrifying sludge could degrade EDCs through simultaneous cooxidation with ammonia oxidation. Sterilized sludge was also tested under the same conditions in order to find the contribution of physical adsorption to the removal of EDCs. About 10~20% of initial EDCs dose was removed when using sterilized sludge. Thus the biological activity is likely to play major role for the degradation of BPA, NP, and DBP rather than the physical adsorption from wastewater.

Characteristics of Disinfection and Removal of 2-MIB Using Pulse UV Lamp (펄스 UV 램프를 이용한 미생물 소독 및 2-MIB 제거 특성)

  • Ahn, Young-Seog;Yang, Dong-Jin;Chae, Seon-Ha;Lim, Jae-Lim;Lee, Kyung-Hyuk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.1
    • /
    • pp.69-75
    • /
    • 2009
  • The characteristics of disinfection and organic removal were investigated with pulse UV lamp in this study. The intensity and emission wavelength of pulse UV Lamp were compared with low pressure UV lamp. The emission spectrum range of pulse UV lamp was between 200 and 400 nm while the emission spectrum of low pressure UV lamp was only single wavelength of 254nm. 3 Log inactivation rate of B. subtilis spore by pulse UV and low pressure UV irradiation was determined as $44.71mJ/cm^2$ and $57.7mJ/cm^2$, respectively. This results implied that wide range of emission spectrum is more effective compared to single wavelength emission at 254nm. 500ng/L of initial 2-MIB concentration was investigated on the removal efficiency by UV only and $UV/H_2O_2$ process. The removal efficiency of UV only process achieved approximately 80% at $8,600mJ/cm^2$ dose. 2-MIB removal rate of $UV/H_2O_2$ (5 mg/L $H_2O_2$) process was 25 times increased compared to UV only process. DOC removal efficiency for the water treatment plant effluent was examined. The removal efficiency of DOC by UV and $UV/H_2O_2$ was no more than 20%. Removal efficiency of THMFP(Trihalomethane Formation Potential), one of the chlorination disinfection by-products, is determined on the UV irradiation and $UV/H_2O_2$ process. Maximum removal efficiency of THMFP was approximately 23%. This result indicates that more stable chemical structures of NOM(Natural Organic Matter) than low molecule compounds such as 2-MIB, hydrogen peroxide and other pollutants affect low removal efficiency for UV photolysis. Consequently, pulse UV lamp is more efficient compared to low pressure lamp in terms of disinfection due to it's broad wavelength emission of UV. Additional effect of pulse UV is to take place the reactions of both direct photolysis to remove micro organics and disinfection simultaneously. It is also expected that hydrogen peroxide enable to enhance the oxidation efficiency on the pulse UV irradiation due to formation of OH radical.

A Feasibility Study on Sewage Discharge Water Treatment for Water Reuse by Direct Contact Membrane Distillation (하수처리수 재이용을 위한 직접접촉식 막증발법 적용 가능성 연구)

  • Choi, Yongjun;Choi, Jihyuck;Shin, Yonghyun;Cho, Hyeongrak;Sohn, Jinsik;Lee, Sangho
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.70-75
    • /
    • 2016
  • The reuse of wastewater is being diffused to manage and develop the water resources. Generally, the treated wastewater is discharged to the river after being treated to meet the effluent quality standard or reused for diverse uses through the reprocessing. And recently, as the reuse of the treated wastewater is activated, the technologies to utilize for the high quality water resources such as industrial water by reusing the wastewater with Membrane Distillation (MD) are under development. In this study, the direct contact membrane distillation (DCMD) process has been applied to treat sewage discharge water for water reuse. The laboratory scale experiment was performed by using a hydrophobic PVDF membrane with the pore size of $0.22{\mu}m$. The influence of operating parameters, such as feed temperature, feed flow rate, feed concentration, on the permeate flux and rejection has been investigated. All filtration tests were conducted till the feed volume reached a concentration factor of 3.0. Thus, the operating period ranged between 19 hr and 49 hr depending on filtration performance. The results showed that above 92% of TN, TP, COD and TOC in the feed could be rejected regardless of an operating condition. The water flux was ranged from 13.8 to 20.3 LMH. The lowest flux was obtained at the operating condition with the feed temperature of $50^{\circ}C$ and feed flow velocity of 500 mL/min while the highest one was measured with $60^{\circ}C$ and 900 mL/min. When the concentration factor reached 3.0, water flux declined by approximately ranged from 14.5% to 33.3%. But the fouling in MD is almost fully reversible, with more than 90% recovery of permeate water flux following a DI water rinse without the addition of chemical cleaning reagents.

Plume Rise and Initial Dilution Determination Reflecting the Density Profile over Entire Water Column (해수 전체 컬럼에서 밀도 분포를 반영한 플룸 상승과 초기 희석도 결정)

    • Journal of Korean Port Research
    • /
    • v.11 no.2
    • /
    • pp.215-230
    • /
    • 1997
  • A number of ocean outfalls are located around coastal area over the United States and discharge primary treated effluent into deep water for efficient wastewater treatment. Two of them, the Sand Island and Honouliuli municipal wastewater outfalls, are located on the south coast of Oahu. There have been growing interests about the plume dynamics around the ocean outfalls since plume discharged from the multiport diffuser may have significant impacts on coastal communities and immediate consequence on public health. Among the studies of plume dynamics performed in the vicinity of both outfalls, Project MB-4 in the Mamala Bay Study recently made with the funding in the $ 9 million amount statistically dealt with the near-field behavior of the plumes at the Sand Island and Honouliuli outfalls. However, Project MB-4 predicted much higher surfacing frequency than the realistic value obtained by model studies by Oceanit Laboratories, Inc.. It is suggested that improvements should be made in the application of the plume model to more simulate the actual discharge characteristics and ocean conditions. In this study, it has been recommended that input parameters in plume models reflect realistic density profile over the entire water column since. in the previous Mamala Bay Study, the density profiles were measured at 5m depth increments extending from 13 to 63 m depth (the density profile on the upper portion of water column was not included, Roberts 1995). It is proved that the density stratification is the important parameter for the submergence of the plume. In this study, as one of the important parameters, plume rise and initial dilution reflecting the density profile over the entire water column have been taken into account for more reliable plume behavior description.

  • PDF

Isolation and Optimization of Cultivating Conditions of Alkalophilic Strains for Biodegradation of Azo Dye (Azo 염료의 분해를 위한 호알카리성 균주의 분리 및 배양조건의 최적화)

  • Kim, Jeong-Mog;Chung, Hyun-Chae;Kwon, Oh-Jin
    • KSBB Journal
    • /
    • v.14 no.6
    • /
    • pp.718-723
    • /
    • 1999
  • In order to treat of alkaline dye-processing wastewater, alkalophilic strains biodegrading azo dye, Acid red 1, is isolated from natural system, and optimal culture conditions are examined using response surface analysis, statistical analysis system program. 15 different species which grow in alkaline culture media are isolated from the effluent and river soil discharged from wastewater treatment plant in dye industrial complex. One strain which has the best decolorization efficiency is chosen, and named as AR-1. The result of the examination of carbon, nitrogen and phosphorus sources which have influence on growth and decolorization reveals that optimum carbon, nitrogen and phosphorus sources are 1.0% fructose, 1.0% polypeptone, 1.0% yeast extract and 0.5% $K_2HPO_4$, respectively. In order to optimize of biodegradation conditions of dye by response surface analysis, the characteristics of decolorization and cell growth according to culture temperature and time are monitered. The result shows that the one is optimum 34.77$^{\circ}C$ for 12.97 hours; the other at 34.73$^{\circ}C$ for 12.96 hours. While, optimal conditions of culture that satisfy both cell growth and decolorization are the temperatures from 32.86$^{\circ}C$ to 36.36$^{\circ}C$ and the period of 10.96 to 15.75 hours, respectively.

  • PDF

Effect of F/R ratio of ASBR (Anaerobic Sequencing Batch Reactor) Process on Removal of the Organic Matters in Ammonia Stripped Swine Wastewater (ASBR(Anaerobic Sequencing Batch Reactor) 공정의 F/R비가 암모니아가 탈기된 축산폐수의 유기물 제거에 미치는 영향)

  • Whang, Gye-Dae;Cho, Young-Moo
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.6
    • /
    • pp.687-694
    • /
    • 2005
  • Lab-scale experiments have been carried out to investigate the effect of F/R ratio of ASBR (Anaerobic Sequencing Batch Reactor) process on the removal of the organic matters in ammonia stripped swine wastewater. Three ASBR inoculated with sludge mixed with granular sludge of UASB (Upflow Anaerobic Sludge Blanket) and anaerobic digested sludge of municipal wastewater treatment plant were operated. Ammonia stripped swine wastewater was used as influent. Prior to conducting the experiments with varied conditions, the effect of increasing organic loading rate from 2.34 to $5.79gTCOD_{Cr}/L$-day at a fixed F/R ratio of 0.1 on the organic removal efficiency has been studied during start-up period. As the result of the experiment, under the condition of varied organic loadings, less than $4.14gTCOD_{Cr}/L$-day, the removed efficiency $TCOD_{Cr}$ of the ASBR process is 83% resulted from the mean value of effluent $TCOD_{Cr}$, 9,125 mg/L during the start-up period. Then ASBRs were operated with F/R ratio of 0.024, 0.303 and 0.91 respectively. Organic loading rate was increased from 4.56 to $15.43gTCOD_{Cr}/L$-day to investigate the effects of F/R ratio and organic loading rate on the organic removal efficiency. As the result of the experiment, less than $6.23gTCOD_{Cr}/L$/L-day, F/R ratio haven't an effect on the organic removal efficiency and the mean removal efficiency of TSS, $TCOD_{Cr}$ and $SCOD_{Cr}$ was about 80%, 86% and 78% at the all of F/R ratio. But as organic loading rate was increased from 8.54 to $12.04gTCOD_{Cr}/L$-day at the F/R ratio of 0.024, the removal efficiency of $SCOD_{Cr}$ decreased from 71% to 63%. The range of decreased removal efficiency of $SCOD_{Cr}$ at the F/R ratio of 0.024 was much more higher than at the F/R ratio of 0.303, 0.91. Thus, as organic loading rate was increased, ASBRs were operated with high F/R ratio to obtain high removal efficiency.

A Study of Actual Condition on Operation and Management of Environmental Infrastructure in the Geum River System (금강수계 내 환경기초시설 운영실태에 관한 연구)

  • Lee, Jae-Woon;Park, Dong-Gi;Kwon, Young-Ho
    • Journal of environmental and Sanitary engineering
    • /
    • v.24 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • The various environmental problems that we face on today are basically about environmental quality. Since early 1960s affluent material was produced because of remarkable economic growth by many cooperations. However, for the lack of environmental policy, environmental pollutions has been serious. The central government should transfer the producing and consuming structure to environmental affinity through the regulations for developing Korea as a model of environmental nation which takes an active part in global environmental programme and in which the environment and economy are well harmonized. Moreover, the central government should take the lead in prevention of environmental pollution through the direct policies such as strengthening the discharge limit or setting up environmental basic institutions by securing budget for conserving environment. This thesis emphasize on the public institution among many environmental basic institutions for environmental anti-pollution project. It will find the problems with running those institutions, and will suggest the preview of improvement. Also, it is necessary to investigate of variation trend for inflow and pollutant loading to environmental infrastructure as increased of the diffusion rate as established and maintenance of sewer system. The purpose of this study is to investigate for inflow and pollutant loading to environmental infrastructure, and also to provide the method of efficiently maintenance and management. The results obtained were summarized as follows; 1. Survey of actual condition on operation and management of environmental infrastructure was evaluated the propriety of treatment process and problem of plant management. 2. Analysis of pollutant loading contribution for river system of environmental infrastructure with data analysis of water quality measuring network. 3. To investigate on case study for efficiently maintenance and management of environmental infrastructure. The result on this study was provide the method of efficiently maintenance and management with survey for establish and repair of sewer system and survey of actual condition on operation and management of environmental infrastructure in the water area of discharge to Geum River System. Application as guideline for establish and management of environmental infrastructure, and management of Geum River System. Also, application for preliminary data for fulfill-assess of total effluent regulation of water pollution.