• Title/Summary/Keyword: Effluent concentration

Search Result 796, Processing Time 0.025 seconds

Effect of the Addition of Granular Activated Carbon and Granular Sludge on the Performance of Upflow Anaerobic Sludge Blanket Reactors for Treating Leachate (상향류 혐기성 슬러지 블랭킷 반응조를 이용한 침출수 처리시 입상 활성탄 및 입상슬러지 첨가의 영향)

  • Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.4
    • /
    • pp.91-97
    • /
    • 2008
  • The objective of this research is to investigate the effect of the addition of granular activated carbon (GAC) and granular sludge on the performance of upflow anaerobic sludge blanket (UASB) reactors for treating leachate. For the control reactor, sludge obtained from an anaerobic digester was used as a seed material. On the other hand, GAC and granular sludge were incorporated with the seed sludge in the GAC reactor and the Granule reactor, respectively. The shortest acclimation period was observed in the Granule reactor. The GAC reactor also gave comparable performance to the Granule reactor at the beginning of operation. However, as the adsorptive capacity of GAC was exhausted, the effluent COD concentration increased gradually. Once the systems were stabilized, the GAC reactor showed slightly better results than the other two reactors in terms of chemical oxygen demand (COD) removal. COD removal in all reactors was more than 90% at hydraulic retention time of 1.0 day. Furthermore, GAC reactor showed little variation in COD removal rate and remained at 95% with organic loading rate (OLR) of 4.0 to $8.2kg\;COD/m^3.d$. Initial operating period was reduced by the addition of granular sludge, while the treatment efficiency was enhanced by the addition of GAC.

  • PDF

Improvement of Rectangle Sedimentation basin using the Moving Baffle (이동식 정류장치를 이용한 횡류식 침전지 침전효율 개선 연구)

  • Cho, Young-Man
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.7
    • /
    • pp.726-731
    • /
    • 2005
  • Sedimentation is treated as the most important unit process in waterworks, and plays great role on turbidity removal efficiency. Rectangle sedimentation basin is the most widely accepted sedimentation process. But it has some problems with short-circuit flow and density flow caused by temperature and influent turbidity variation. To solve these problems, installation of rectification wall was suggested, but not generally fully accepted in field. Because hole of rectification wall cause jet flow. In this research, use of moving baffle was investigated. Moving baffle was designed to induce uniform velocity at every section of water flow. The baffle walls was made from soft fiber materials. The baffle walls with flow of sedimentation basin moves at same speed. It is like that it controls density flow and short-circuit flow and induce uniform velocity at every section of water flow in sedimentation basin. When moving baffle was operated retention time of sedimentation basin was extended to 1 hours. When it talked again and the effluent time of highest concentration of the chlorine ion from 100 minutes was extended to 160 minutes. Turbidity removal efficiency was tested with different operation modes(continuous and batch) with influent turbidity and retention time. It was revealed that turbidity removal efficiency carl be improved up to 36%(continuous mode) and 58%(batch mode) respectively. Consequently if moving baffle introduces in Rectangle sedimentation basin, it forecasts that the turbidity improvement above 30% will be possible.

Improved Organic Removal Efficiency in Two-phase Anaerobic Reactor with Submerged Microfiltration System (침지형 정밀여과시스템을 결합한 이상 혐기성 시스템에 의한 유기물 제거율의 향상)

  • Jung, Jin-Young;Chung, Yun-Chul;Lee, Sang-Min
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.4
    • /
    • pp.629-637
    • /
    • 2000
  • A two-phase anaerobic reactor with a submerged microfiltration system was tested for its ability to produce methane energy from organic wastewater. A membrane separation system with periodic backwashing with compressed air was submerged in the acidogenic reactor. The cartridge type of microfiltration (MF) membrane with pore size of $0.5{\mu}m$ (mixed esters of cellulose) was tested. An AUBF (Anaerobic Upflow Sludge Bed Filter: 1/2 packed with plastic media) was used for the methanogenic reactor. Soluble starch was used as a substrate. The COD removal was investigated for various organic loading with synthetic wastewater of 5,000 mg starch/L. When the hydraulic retention time (HRT) of the acidogenic reactor was changed from 10 to 4.5 days, the organic loading rate (OLR) varied from 0.5 to $1.0kg\;COD/m^3-day$. When the HRT of the methanogenic reactor was changed from 2.8 to 0.5 days, the OLR varied from 0.8 to $5.8kg\;COD/m^3-day$. The acid conversion rate of the acidogenic reactor was over 80% in the 4~5 days of HRT. The overall COD removal efficiency of the methanogenic reactor showed over 95% (effluent COD was below 300 mg/L) under the highly fluctuating organic loading condition. A two-phase anaerobic reactor showed an excellent acid conversion rate from organic wastewater due to the higher biomass concentration than the conventional system. A methanogenic reactor combined with sludge bed and filter, showed an efficient COD and SS removal.

  • PDF

The Effect of the Reaction Time Increases of Microbubbles with Catalyst on the Nitrogen Reduction of Livestock Wastewater (가축분뇨의 마이크로버블과 촉매와의 반응 시간 증가에 따라 질소 제거에 미치는 영향)

  • Jang, Jae Kyung;Sung, Je Hoon;Kang, Youn Koo;Kim, Young Hwa
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.10
    • /
    • pp.578-582
    • /
    • 2015
  • It was investigated whether the removal of nitrogen ions included livestock wastewater were increased by increasing the reaction time of livestock wastewater and microbubbles with catalyst. For this study, the nitrogen reduction system using microbubbles with catalyst was used. The two reactors were consecutively arranged, and the second reactor (Step 2) was located to next the first reactor (Step 1). Each reactor was reacted for 2 hours and air or oxygen as oxidant was fed into the reactor during operation before microbubble device. When oxygen was used, ammonia nitrogen was removed each 18.3% and 52.8% during 2 (only step 1) and 4 (step 1 and step 2) hours reactions. This value was higher than that of when air was fed. When oxygen was used, the longer the reaction time, the ammonia nitrogen removal was higher. The longer the reaction time, the higher the nitrite and nitrate was also removed such as ammonia nitrogen. Also this system was examined whether organic matter removal is effective. The total chemical oxygen demand (TCOD) removal was higher than the soluble chemical oxygen demand (SCOD). Some materials among causing substances COD were difficult to decompose biologically. Therefore, it means that it will be easy to operate the biological processes following step and reduce the concentration of organic contaminants in effluent.

A Pilot Study for Microfiltration of Alcohol Stillage Condensate and Permeate Recycle to Fermentation Broth (알코홀 증류폐액의 Pilot Scale 정밀여과와 여과액의 발효 재활용에 대한 연구)

  • 김영범;이기세;남궁견;김종현
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.403-408
    • /
    • 2001
  • Distillation condensate generated from downstream processing of microbial alcohol fermentation imposes a serious burden to biological wastewater treatment or anaerobic digestion due to its high contents of SS (suspended solids) and TN (total nitrogen), A pilot scale microfiltration of the stillage condensate with a stainless steel SCEPTER membrane of 0.1 ${\mu}$m pore size was carried out to remove SS which was mostly composed of microbial cell residue. A stable permeate flux was achieved when the decanter effluent containing 0.7% of SS was filtered under the conditions of X10 VCR (volume concentration ratio), 2.5 bar of TMP (transmembrane pressure), and 60$^{\circ}C$. When stillage condensate with 2.6% SS was treated directly with microfiltration, VCR below X3 was recommended for a long duration of filtration. The permeate and retentate obtained from microfiltration were recycled to make-up medium of fermentation. Adding permeate or retentate up to 30% of fermentation volume showed no distinguished undesirable influence during the course of alcohol fermentation. Although only slight improvements in the final amount of CO$_2$ evolution and alcohol content were observed, fermentation rate increased so that the required time to reach 450 L/ton of CO$_2$ evolution was shortened to 72% of that with normal media.

  • PDF

On the Development of Toilets in Korean Rural Areas for Preventing Transmission of Communicable Diseases (질병전염 방지를 위한 농촌변소 개량에 관한 연구)

  • 정문식;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.6 no.1
    • /
    • pp.1-9
    • /
    • 1979
  • An experimental study was carried out to develop a rural type toilet of which the effluent could not transmit parasitic diseases at a village in Kangwon Province, Korea, during the period of January through December 1978, A drum tank (dia. 57cm$\times$90cm) and a cement tank (100cm$\times$100cm$\times$100cm) were filled with human excreta collected from toilets of the villages (the ratio of feces to urine was estimated approximately 1: 5) at once and three threecompartment toilets were constructed and used by people. pH, temperatures and viability of parasitic eggs were examined with the content of toilets. Rusults are summarized as follows: 1. pH increased from 7.0 at the beginning of experiment to 7.5 or 8.0 after 4 months of storage in drum tank as well as in cement tank and so did from 7.0~7.5 in the first tank to 8.0~8.5 in the third tank of all three-compartment toilets. 2. Temperatures of content at middle part of toilets in January through March ranged from 2 to 6$\circ$C which were 2-4$\circ$C higher than those of air, and those of lower part were again 1~2$\circ$C higher than of middle part. but temperatures of air, at middle part andat lower part in April were 14$\circ$C, 9~10$\circ$C and 8~9$\circ$C respectively, in July 29$\circ$C, 20~21$\circ$C and 19~20$\circ$C respe ctively and in October 17$\circ$C, 14$\circ$C and 14~13$\circ$C respectively. 3. All the parasitic eggs were degenerated about 4 months after filling drum tank with human excreta on 10th April while 10% of eggs were degenerated on 15th May, and all the eggs were degenerated about 4 months after filling cement tank on 24th August while about 10% were degenerated on 11th September and 20% on 4th October. 4. Degeneration rates of eggs were only 5~15% at 5cm below surface in the first tanks of three-compartment toilets while 45~65% at 50cm below, and concentration rates of eggs in second tanks were 8~12% of those in first tanks and only a few eggs were found in third tank but all of them were degenerated. Specific gravity of liquid of 1.022~1.024 in second tanks was not enough for overflowing eggs into third tanks.

  • PDF

Operation of Advanced Water Treatment Processes for Downstream River Source Water (상수원수의 고도정수처리 공정 파일롯 운전 연구)

  • Wang, Chang-Keun;Oh, Sang-Eun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.1
    • /
    • pp.1-6
    • /
    • 2012
  • Down Stream K River has high COD (4-10 mg/L) and high $NH_3$-N concentration (3.5 mg/L during winter period). Although $NH_3$-N itself is not reported harmful at this level, it must be removed to meet drinking water standard (0.5 mg/L). We constructed a pilot plant modifying the processes of conventional drinking water facilities. Prechlorination and powdered activated carbon (PAC) dechlorination was adopted prior to a flocculation tank to remove ammonia and prevent disinfection byproducts (DBPs) formation. Also, GAC processes was included after sand filter to remove residual DOC. This pilot having a capacity of 36 ton/day was operated for one year. The GAC processes were successful to remove ammonia and many organic pollutants (DOC, MBAS, UV-254 nm absorbance, etc). Influent DOC concentrations were very high as 3~6 mg/L throughout the plant operation. It was impossible to achieve 1.0 mg/L effluent DOC, indicating that bed depth (2 m) should be increased to achieve more strict DOC quality standards. When $Cl_2$ dose was well controlled ($Cl_2/NH_3$-N ratio 10~11 on a weight basis), $NH_3$-N removal was 98% and THMs was very low possibly due to low free residual chlorine and PAC dechlorination.

Removal of Nitrogen Using by SOD Process in the Industrial Wastewater Containing Fluoride and Nitrogen from the Zirconium Aolly Tubing Production Factory of the Nuclear Industry (원자력산업 지르코늄합금 튜브 생산공장에서 배출되는 불소.질소 함유 폐수의 황산화탈질을 이용한 질소처리)

  • Cho, Nam-Chan;Moon, Jong-Han;Ku, Sang-Hyun;Noh, Jae-Soo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.11
    • /
    • pp.855-859
    • /
    • 2011
  • The main pollutants from zirconium alloy tubing manufacturing process in nuclear industry are nitrate ($NO_3-N$) and fluoride (F-)Nitric acid, and hydrofluoric acid is used for acid pickling. The process for the removal of nitrate and fluoride is composed of 1st chemical coagulation, SOD (Sulfur Oxidation Denitrification) process using sulfur-oxidizing denitrification, and 2nd chemical coagulation. The characteristic of the wastewater treatment is an application of SOD process. The SOD Process is highly received attention because it is significantly different from existing processes for sulfur denitrification. A JSC (JeonTech-Sulfur- Calcium) Pellet is unification of sulfur and alkalinity material. According to result of SOD process in wastewater treatment plant, the removal efficiency of T-N was over 91% and the average concentration of T-N from influent was 147.55 mg T-N/L and that from effluent was 12.72 mg T-N/L. Therefore, SOD process is a useful to remove nitrogen from inorganic industrial wastewater and a new development of microbial activator was shown to be stable for activation of autotrophic bacteria.

Analysis of Synthetic Fragrances (SFs) in Water Using Stir Bar Sorptive Extraction (SBSE) and GC-MS/MS (교반막대 추출법과 GC-MS/MS를 이용한 수중의 합성 향물질류 분석)

  • Seo, Chang-Dong;Son, Hee-Jong;Yoom, Hoon-Sik;Choi, Jin-Taek;Ryu, Dong-Choon;Kwon, Ki-Won;Jang, Seung-Ho
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.6
    • /
    • pp.387-395
    • /
    • 2014
  • A highly sensitive analytical method based on stir bar sorptive extraction (SBSE) technique and gas chromatography/tandem mass spectrometry (GC-MS/MS) has been developed, allowing the simultaneous multi-analyte determination of 11 synthetic fragrances (SFs) in water samples. The stir bar coated with polydimethylsiloxane (PDMS) was added to 40 mL of water sample at pH 3 and stirred at 1,100 rpm for 120 min. Other SBSE parameters (salt effect and presence of organic solvent) were optimised. The method shows good linearity (coefficients > 0.990) and reproducibility (RSD < 10.9%). The extraction efficiencies were above 83% for all the compounds. The limits of detections (LOD) and limits of quantification (LOQ) were 2.1~4.1 ng/L and 6.6~12.9 ng/L, respectively. The developed method offers the ability to detect 11 SFs at ultra-low concentration levels with only 40 mL of sample volume. Matrix effects in tap water, river water, wastewater treatment plant (WWTP) final effluent water and seawater were investigated and it was shown that the method is suitable for the analysis of trace level of 11 SFs. The method developed in the present study has the advantage of being rapid, simple, high-sensitive and both user and environmentally friendly.

Efficiency Assessment of Wastewater Treatment Plant and Groundwater Level by Pump and Treat Technology Applied for Petroleum Contaminated Site (유류오염 지하수 정화를 위한 양수처리법 적용시 지하수위 변화 및 수처리장치의 효율평가)

  • Cho, Chang-Hwan;Kim, Joon-Ho;Park, Min-Kyu;Kim, Tae-Hyung;Choi, Yoen-Soo;Choi, Sang-Il
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.3
    • /
    • pp.33-38
    • /
    • 2014
  • This study was performed to evaluate the applicability of pump and treat technology as well as to identify the changes of groundwater level by continuous pumping at the petroleum contaminated site. A total of 9 monitoring wells were installed at the site and the contaminant concentrations, TPH, benzene, toluene, ethylbenzene and xylene, of groundwater were measured. With the results of the groundwater monitoring, a total of 9 wells were set up for pumping contaminated groundwater in 3 locations. The waste water treatment facility with a capacity of $10m^3/hr$ was installed in the site and operated for about 1 year. The concentrations of the contaminated groundwater from the 3 pumping wells were exceeded groundwater regulation for benzene and TPH. However, the effluent concentration of benzene and TPH was under the regulation showing the maximum level of 0.011 mg/L and 1.2 mg/L during the operation periods. Groundwater levels were decreased by continuous pumping and those were not recovered during the operation period. Groundwater levels of PW-1,2, PW-3,4,5,6 and PW-7,8,9 were decreased about 5 m, 0.7 m, 2 m, respectively. The hydraulic conductivity (K) of the region of PW-1,2, PW-3,4,5,6 and PW-7,8,9 was estimated to be $6.143{\times}10^{-5}cm/sec$, $2.675{\times}10^{-5}cm/sec$, $1.198{\times}10^{-4}cm/sec$. Groundwater level was seemed to be affected not by hydraulic conductivity but by morphological effect. These results show that the pump and treat technology has high applicability for the restoration of petroleum contaminated groundwater but needs continuous monitoring to prevent rapid groundwater drawdown.