• Title/Summary/Keyword: Effluent

Search Result 1,975, Processing Time 0.025 seconds

A Comparison of Substrate Removal Kinetics of Anaerobic Reactor systems treating Palm Oil Mill Effluent (Palm Oil Mill Effluent 처리 시 Anaerobic Hybrid Reactor의 기질 제거 Kinetics 비교)

  • Oh, Dae-Yang;Shin, Chang-Ha;Kim, Tae-Hoon;Park, Joo-Yang
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.971-979
    • /
    • 2011
  • Palm Oil Mill Effluent (POME) is the mixed organic wastewater generated from palm oil industry. In this study, kinetic analysis with treating POME in an anaerobic hybrid reactor (AHR) was performed. Therefore, the AHR was monitored for its performances with respect to the changes of COD concentrations and hydraulic retention time (HRT). Batch tests were performed to find out the substrate removal kinetics by granular sludge from POME. Modified Stover Kincannon, First-order, Monod, Grau second-order kinetic models were used to analyze the performance of reactor. The results from the batch test indicate that the substrate removal kinetics of granular sludge is corresponds to follow Monod's theory. However, Grau second-order model were the most appropriate models for the continuous test in the AHR. The second order kinetic constant, saturation value constant, maximum substrate removal rate, and first-order kinetic constant were 2.60/day, 41.905 g/L-day, 39.683 g/L-day, and 1.25/day respectively. And the most appropriate model was Grau second-order kinetic model comparing the model prediction values and measured COD concentrations of effluent, whereas modified Stover-Kincannon model showed the lowest correlation.

Effluent and Aerobic Stability of Cellulase and LAB-Treated Silage of Napier Grass (Pennisetum purpureum Schum)

  • Zhang, J.;Kumai, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.13 no.8
    • /
    • pp.1063-1067
    • /
    • 2000
  • The effects of acremonium cellulase (AC) additive and lactic acid bacteria (LAB) inoculant on effluent production and aerobic stability of silage were investigated. Napier grass (Pennisetum purpureum Schum) was treated with AC at the rates of 0.05 ($AC_1$) and 0.1 g/kg $(AC_2)$ and/or with LAB at the rate of $1.0{\times}10^8cfu/kg$ fresh grass at ensiling. The treatments of LAB, $AC_1$, $AC_2$, $LAB+AC_1$ and $LAB+AC_2$ significantly (p<0.01) decreased pH and contents of volatile basic nitrogen and butyric acid, and significantly (p<0.01) increased lactic acid content compared with the control. All treated silages were well preserved with pH of lower than 4.2. There were no significant differences in fermentation quality between the application rates of AC ($AC_1$ and $AC_2$) and between the mixtures ($AC_1+LAB$ and $AC_2+LAB$). AC ($AC_1$ and $AC_2$) and AC plus LAB ($AC_1+LAB$ and $AC_2+LAB$) resulted in more silage effluent than the control and LAB inoculant alone. When the experimental silos were opened, the silages treated with AC and/or LAB were not as stable as the control silage, as shown by pH increase and lactic acid decomposition.

Field Observation for the effluent of sediment and nutrient on the Coastal Area (연안역의 토사 및 영양염류 유출에 관한 현지관측)

  • Lee Guk-Jin;Kim In-Soo;Ikeda Shunsuke
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.113-118
    • /
    • 2005
  • We studied field observation and countermeasure about the effluent of sediment and nutrient materials on the Okinawa Ishigaki Coast according rainy season though this observation, we found out the analysis of outflow topography, intensity of rainfall and effects on the tide, the property of effluent materials ete. The sediment and nutrient concentration of the Okinawa Ishigaki coast are different on the regional sites according to vary with time variation of intensity of rainfall and the ebb and flow. We could confirm to vary with utilized waterways land area and distribution of surrounding vegetation.

Decolorization of Dyehouse Effluent and Biodegradation of Congo Red by Bacillus thuringiensis RUN1

  • Olukanni, O.D.;Osuntoki, A.A.;Awotula, A.O.;Kalyani, D.C.;Gbenle, G.O.;Govindwar, S.P.
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.6
    • /
    • pp.843-849
    • /
    • 2013
  • A dye-decolorizing bacterium was isolated from a soil sample and identified as Bacillus thuringiensis using 16S rRNA sequencing. The bacterium was able to decolorize three different textile dyes, namely, Reactive blue 13, Reactive red 58, and Reactive yellow 42, and a real dyehouse effluent up to 80-95% within 6 h. Some non-textile industrially important dyes were also decolorized to different extents. Fourier transform infrared spectroscopy and gas chromatography-mass spectrometer analysis of the ethyl acetate extract of Congo red dye and its metabolites showed that the bacterium could degrade it by the asymmetric cleavage of the azo bonds to yield sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) and phenylbenzene. Sodium (4-amino-3-diazenylnaphthalene-1-sulfonate) was further oxidized by the ortho-cleavage pathway to yield 2-(1-amino-2-diazenyl-2-formylvinyl) benzoic acid. There was induction of the activities of laccase and azoreductase during the decolorization of Congo red, which suggests their probable role in the biodegradation. B. thuringiensis was found to be versatile and could be used for industrial effluent biodegradation.

Development of Optimal Septic Tank in the Countries of Water Shortages (물 부족국가에서 활용가능한 정화조의 최적모형 개발)

  • Lim, Bong-Su;Jing, Hai-Long
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.4
    • /
    • pp.418-427
    • /
    • 2015
  • This study was carried out to evaluate the performance of a lab-scale novel septic tank system for improving the conventional septic tank in the developing countries of water shortages. The lab-scale novel septic tank system consists of sepetic tank, aeration tank with HBC-ring, and sand filter. Optimum HRT was reguired about 1.5days to get a total COD removal efficiency of 90%, COD, BOD and SS removal efficiency was about 70%, 60%, and 85% in sepetic tank only. The structure of sepetic tank with two stages results in the high removal efficiency of organic matter. When sepetic tank, aeration tank, and sand filter were more than HRT 1.5days, 18hrs, and 12hrs, respectively, final effluent was less than 20 mg/L of BOD, 14 mg/L of SS, so that there is a high potential of its use for reusing water in flush toilet. There is no significant effect of HRT change on nutrient removal. Total nitrogen removal efficiency was about 40%, final effluent was 30~40 mg/L of TN, total phosphorus removal efficiency was about 11~25%, final effluent was 9~12 mg/L of TP. Because there is very small amounts of organic nitrogen and phosphorus in effluent, it was possible to reuse water for agricultural use.

Disinfection and Removal of SS and T-P Using DOF (Dissolved Ozone Flotation) (DOF(Dissolved Ozone Flotation)를 이용한 부유물질과 총인의 제거와 소득의 동시효과에 관한 연구)

  • Lee., Byoung-Ho;Kim, Sung-Hyuk;Lee, Sang-Bae;Kim, Mi-Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.2
    • /
    • pp.215-221
    • /
    • 2004
  • Effluent of wastewater treatment plant is to be disinfected to protect drinking water sources. DOF (Dissolved Ozone Flotation) was developed to meet this purpose. DOF was developed by combining DAF system with ozone. DAF system has good floating power with numerous microbubbles, and ozone has strong oxidation capability. And DOF system has good floating power and strong oxidation capability simultaneously. When DOF was applied to secondary wastewater effluent, color of 11CU in raw water which was secondary effluent was reduced to 1CU by the DOF system. Removal rate of other water quality parameters treated by DOF were also higher than that by DAF, which were proved the strength of oxidation capability of ozone. When ozone concentration of 3.3mg/l were applied in DOF system, general aerobic bacteria were reduced to 5CFU/ml from TNTC (Too many Numbers To Count). With the same ozone concentration, total coliform were not detected at all. These figures are under the numbers of drinking water regulation. These microbes were the target parameters of DOF. It was proved that DOF was very effective in disinfection of wastewater treatment plant effluent as well as in removal of color, turbidity, and T-P.

Removal characteristics of organic matter during pretreatment for membrane-based food processing wastewater reclamation

  • Jang, Haenam;Lee, Wontae
    • Membrane and Water Treatment
    • /
    • v.9 no.4
    • /
    • pp.205-210
    • /
    • 2018
  • In this study, we investigated coagulants such as polyaluminum chloride (PACl) and ferric chloride ($FeCl_3$) and the combination of a coagulant and powdered activated carbon (PAC) for the removal of dissolved organic matter (DOM) from fish processing effluent to reduce membrane fouling in microfiltration. The efficiency of each pretreatment was investigated through analyses of dissolved organic carbon (DOC) and ultraviolet absorbance at 254 nm ($UVA_{254}$). Membrane flux and silt density index (SDI) analyses were performed to evaluate membrane fouling; molecular weight distributions (MWD) and fluorescence excitation-emission matrix (FEEM) spectroscopy were analyzed to assess DOM characteristics. The results demonstrated that $FeCl_3$ exhibited higher DOC and $UVA_{254}$ removals than PACl for food processing effluent and a combination of $FeCl_3$ and PAC provided comparatively better results than simple $FeCl_3$ coagulation for the removal of DOM from fish processing effluent. This study suggests that membrane fouling could be minimized by proper pretreatment of food processing effluent using a combination of coagulation ($FeCl_3$) and adsorption (PAC). Analyses of MWD and FEEM revealed that the combination of $FeCl_3$ and PAC was more efficient at removing hydrophobic and small-sized DOM.

Application of $A^2$/O Process for Removal of Nitrogen and Phosphorus in Sewage (하수중의 질소.인 제거를 위한 $A^2$/O공정의 적용)

  • 안철우;박진식;문추연
    • Journal of Environmental Health Sciences
    • /
    • v.26 no.4
    • /
    • pp.9-14
    • /
    • 2000
  • In this study, the removal efficiencies of organics, nitrogens and phosphorus from municipal wastewater using $A^2$/O process were investigated. BO $D_{5}$ removal efficiencies were indicated 95% and 94% with HRT of 12 hr and 10 hr, respectively. CO $D_{Cr}$ average removal efficiency and concentration of effluent were indicated 87% and 34mg/$\ell$. SS average removal efficiency and concentration of effluent were indicated 93% and 4~17mg/$\ell$. T-N removal efficiency and concentration of effluent were shown as 60~80% and below 15mg/$\ell$. In aerobic basin, removal efficiency of N $H_4$-N was shown over 97% with N $H_4$-N volume load 0.16kg N $H_4$-N/㎥.d and in anoxic basin, denitrification efficiency was indicated over 80% with return sludge rate 0.5Q and internal recirculation rate 2.5Q. Removal efficiency and effluent concentration of phosphorus were shown over 80% and below 2 mg/$\ell$ with return sludge rate 0.5Q.Q.

  • PDF

The Behavior of Effluent Discharged from the Confined Dumping Facility (제한투기시설에서 배출되는 여수의 거동)

  • 정대득;이중우
    • Journal of Korean Port Research
    • /
    • v.14 no.4
    • /
    • pp.429-439
    • /
    • 2000
  • The primary purpose of dredging work is to maintain navigational readiness and to increase environmental amenity. Therefore the dredging project, which is composed of excavating, removing, transporting and storing or dumping dredged material, must be carefully managed to insure that dredging works are completed in a cost-effective and environmentally safe method. The most important point in dumping operations is evaluating and decreasing the impacts of dumping works at the dumping area. One of the most effective method for this purpose is using the schematic process composed of the sophisticate plan, precise work and predicting/reducing the impacts based on an numerical model being closely linked with field observation. In this study, a numerical model is used to predict the spatial transport and fate of the effluent discharged from the confined dumping facility(CDF) located at a coastal area. To achive this purpose, numerical models were used for reappearing the tidal current of concerned area. These models were then applied to Mokpo harbpr where capital dredging and maintenance dredging are being conducted simultaneously and the CDF is under construction. In series of model case study, we found that the effluent discharged from CDF was governed by the receiving water condition and outfall geometry, so that limit of near-field was 14∼500 meter down stream and 4∼150 meter in transverse direction. dilution ranged from 1.1 to 8.2 on the cases. Long-term diffusion characteristics was governed by the dilution rate during near-field behavior, ambient conditions and CDF operation modes.

  • PDF

Physicochemical Treatment of Waste Water Containing Organic Materials (유기물을 함유한 폐수의 물리화학적 처리에 관한 연구)

  • Lee, Han-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.493-498
    • /
    • 2013
  • The production of synthetic polymer compounds and ethanolamine (ETA, a pH control agent used in nuclear power plants) generates effluent that pollutes water. This study focused on the development of chemicals for the treatment of effluent and processes to reduce the COD level due to the presence of organic materials via physicochemical treatment. It was found that a mixed coagulant of $FeCl_2$ and $MgCl_2$ (1:1) was the most effective in treating effluent and reducing the COD level. When the mixed coagulant was injected into effluent including organic materials, the COD level was reduced by more than 80%.