• Title/Summary/Keyword: Efficiency of Control

Search Result 9,276, Processing Time 0.051 seconds

Efficiency Optimization Control for Field-Weakening Region of Synchronous Reluctance (동기 리럭턴스 전동기의 약계자 영역을 고려한 효율 최적화 제어)

  • Lee, Jung-Chul;Lee, Hong-Gyun;Chung, Dong-Wha
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1169-1171
    • /
    • 2001
  • Synchronous reluctance motors(SynRM) for the application such as an electric vehicle, compressor drives of air conditioner and machine tool spindle drives require a wide field-weakening speed range. In order to improve the efficiency performance in such applications, this paper has examined the loss and the efficiency characteristics of SynRM mainly in the field-weakening speed region over the base speed. The control strategy in order to offer a efficiency optimization operation is shown and the copper and iron losses driven the equivalent circuit model of the machine is minimized. The usefulness of the proposed efficiency optimization control is verified through the SynRM durve system.

  • PDF

Efficiency Optimization Control of SynRM Drive using Multi-AFLC (다중 AFLC를 이용한 SynRM 드라이브의 효율 최적화 제어)

  • Jang, Mi-Geum;Ko, Jae-Sun;Choi, Jung-Sik;Kang, Sung-Jun;Baek, Jeong-Woo;Kim, Soon-Young;Chung, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.359-362
    • /
    • 2009
  • Optimal efficiency control of synchronous reluctance motor(SynRM) is very important in the sense of energy saving and conservation of natural environment because the efficiency of the SynRM is generally lower than that of other types of AC motors. This paper is proposed a novel efficiency optimization control of SynRM considering iron loss using multi adaptive fuzzy learning controller(AFLC). The optimal current ratio between torque current and exciting current is analytically derived to drive SynRM at maximum efficiency. This paper is proposed an efficiency optimization control for the SynRM which minimizes the copper and iron losses. There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization control is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. The control performance of the proposed controller is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

  • PDF

Efficiency Optimization Control of PMSM (PMSM 드라이브의 효율 최적화 제어)

  • Song, Jae-Joo;Lee, Jung-Chul;Han, Byung-Sung;Whang, Jong-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.55-58
    • /
    • 2003
  • IPMSM (Interior Permanent Magnet Synchronous Motor) is widely used in many applications such as an electric vehicle, compressor drives of air conditioner and machine tool spindle drives. In order to maximize the efficiency in such applications, this paper is proposed the optimal control method of the armature current. The controllable electrical loss which consists of the copper loss and the iron loss can be minimized by the optimal control of the armature current. The minimization of loss is possible to realize efficiency optimization control for the proposed IPMSM The proposed control algorithm is applied to IPMSM drive system, the operating characteristics controlled by efficiency optimization control are examined in detail by simulation.

  • PDF

Efficiency Optimization Control for High Performance Operation of Synchronous Reluctance Motor (동기 리럭턴스 전동기의 고성능 운전을 위한 효율 최적화 제어)

  • 정동화;이정철;이홍균
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.2
    • /
    • pp.51-56
    • /
    • 2001
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor (SynRM) which minimizes the copper and iron losses. fen exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. Simulation results are presented to show the validity of the proposed algorithm.

  • PDF

Maximum Efficiency Drive of Vector-Controlled Induction Motors (벡터제어 유도전동기의 최대효율 운전)

  • Yoon, Duck-Yong;Choe, Gyu-Ha;Hong, Soon-Chan;Baek, Soo-Hyun;Lee, Eun-Woong
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.1 no.1
    • /
    • pp.27-37
    • /
    • 1996
  • This paper proposes the control algorithm for maximum efficiency drive of PWM inverter - induction motor system with high dynamic performance. If the induction motor is driven under light load with rated magnetizing current, the Iron loss is excessively large compared with the codder loss which results in doer motor efficiency. Maximum efficiency drive of an induction motor can be achieved by controlling the magnetizing current to satisfy the optimal ratio that leads the total motor loss to be a minimum value at a given speed. The proposed control algorithm essentially uses vector control technique and adopts voltage decoupling control strategy to prevent the degradation of dynamic performance due to reduced magnetizing current. To verify the proposed method, digital simulations and experiments are carried out for a squirrel-cage induction motor with the rating of 2.2[kW].

  • PDF

Maximum-Efficiency Tracking Scheme for Piezoelectric-Transformer Inverter with Dimming Control

  • Nakashima Satoshi;Ogasawara Hiroshi;Kakehashi Hidenori;Ninomiya Tamotsu
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.7-10
    • /
    • 2001
  • This paper provides a solution for the problem of efficiency decrease caused by load variation. A novel control scheme of tracking the PT's operation frequency for the maximum efficiency is proposed. As a result, a high efficiency over $80\%$ has been achieved even under the output-current decrease down to $10\%$ of the full load current.

  • PDF

Efficiency Optimization Control of Induction Motor using Adaptive Flux Observer (적응 자속 관측기를 이용한 유도전동기의 효율 최적화 제어)

  • 정동화;박기태;이홍균
    • Journal of the Korean Society of Safety
    • /
    • v.16 no.4
    • /
    • pp.88-95
    • /
    • 2001
  • Stator core loss has significant adverse effects when an induction motor is controlled by the conventional vector control method. Therefore, taking core toss into account should make it possible to control the torque very precisely. This paper proposes a speed sensorless vector control method for an induction motor at optimum efficiency and high response taking core loss account. The proposed vector control system consists of a speed adaptive rotor flux observer which takes core loss into account and employs a direct vector control which compensates for the influence of core loss. Also, in this paper, a vector controlled induction motor with a deadbeat rotor flux controller is developed. The method ensures optimum efficiency in the steady state without degradation of the dynamic response. The validity of the proposed technique is confirmed by simulation results for induction motor drive system.

  • PDF

An Optimal Efficiency Control of Reluctance Synchronous Motor using Direct Torque Control (직접 토크 제어를 이용한 리럭턴스 동기 전동기의 최대 효율제어)

  • Park Hong-il;Kim Nam-Hun;Choi Kyeong-Ho;Kim Dong-Hee;Kim Min-Huei
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.431-434
    • /
    • 2002
  • This paper presents an implementation of direct torque control(DTC) of Reluctance Synchronous Motor(RSM) with an efficiency optimization using the 32bit DSP TMS320C31. The influence of iron loss can not neglected as high speed and precision torque control of RSM, so the optimal current ration between torque current and exiting current analytically derived to drive RSM at maximum efficiency For RSM, torque dynamics can be maintained even with controlling the flux level because the generated torque is direct]y proportional to the stator current. The experimental results for an RSM are presented to validate the applicability of the proposed method. The developed control system is shown high efficiency features with 1.0Kw RSM having 2.57 ratio of d/q reluctance.

  • PDF

Performance Analysis of High Efficiency DC-DC Chopper added in Electric Isolation (고효율 절연형 DC-DC 초퍼의 특성해석)

  • Kwak, Dong-Kurl;Lee, Bong-Seob;Kim, Choon-Sam;Jung, Do-Young;Kim, Soo-Kwang
    • Proceedings of the KIPE Conference
    • /
    • 2007.11a
    • /
    • pp.115-117
    • /
    • 2007
  • This paper is analyzed for DC-DC chopper performance of high efficiency added in electric isolation. The general converters of high efficiency are made that the power loss of the used switching devices is minimized. To achieve high efficiency system, the proposed chopper is constructed by using a partial resonant circuit. The control switches using in the chopper are operated with soft switching for a partial resonant method. The control switches are operated without increasing their voltage and current stresses by the soft switching technology. The result is that the switching loss is very low and the efficiency of chopper is high. And the proposed chopper is added in a electric isolation. When the power conversion system is required to electric isolation, the proposed chopper is adopted with system development of high efficiency. The soft switching operation and the system efficiency of the proposed chopper is verified by digital simulation and experimental results.

  • PDF