• Title/Summary/Keyword: Efficiency evaluation

Search Result 4,770, Processing Time 0.031 seconds

Development and application of integrated indicators for assessing the water resources performance of multi-purpose and water supply dams (댐 용수공급능력 안정성 평가를 위한 통합지표 개발 및 적용)

  • Sung, Jiyoung;Kang, Boosik;Kim, Bomi;Noh, Seongjin
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.9
    • /
    • pp.687-700
    • /
    • 2022
  • For comprehensively assessment the water resources performance of multi-purpose dams and water supply dams in South Korea, a methodology was proposed to utilize the durational reliability along with the integrated auxiliary indicators including resiliency, dimensionless vulnerability, water resource efficiency, specific inflow, and specific water supply. In addition, for the purpose of sustainable dam operation in the future, a plan to grade the water resources performance was presented to periodically evaluate the performance and determine the priority of each dam's structural or non-structural planning according to the evaluation results. As major results, in the case of Sumjingang Dam, the durational reliability was 99.0%, but the integrated auxiliary index was the lowest of 44 points, which was 5th grade. This means that despite the current high reliability, hydrological changes due to future climate change or regional change of water demand-supply balance can have significant impacts on the water resources performances. In contrast, the Chungju Dam with a durational reliability of 93.0%, which is below the average among all multi-purpose dams, shows the 76 points of the integrated auxiliary index, which is 3rd highest following the Soyanggang Dam and the Namgang Dam. Nevertheless, due to the size of the basin, the specific inflow is sufficiently high as 185%, so the actual performance could be evaluated relatively high. The water supply dams designed for a single purpose tend to be evaluated relatively high because they have a high proportion of industrial and municipal water supply and have enough room for the supply capacity.

Evaluation on the Potential of 18 Species of Indoor Plants to Reduce Particulate Matter

  • Jeong, Na Ra;Kim, Kwang Jin;Yoon, Ji Hye;Han, Seung Won;You, Soojin
    • Journal of People, Plants, and Environment
    • /
    • v.23 no.6
    • /
    • pp.637-646
    • /
    • 2020
  • Background and objective: The main objective of this study is to measure the amount of particulate matter (PM) reduction under different characteristics of leaves in 18 different species of indoor plants. Methods: First, a particular amount of PM was added to the glass chambers (0.9×0.86×1.3 m) containing the indoor plant (height = 40 ± 20 cm), and the PM concentration were measured at 2-hour intervals. The experiment with the same conditions was conducted in the empty chamber as the control plot. Results: The range of PM reduction per unit leaf area of 18 species of experimental plants was 3.3-286.2 ㎍·m-2 leaf, total leaf area was 1,123-4,270 cm2, and leaf thickness was 0.14-0.80 mm and leaf size 2.27-234.47 cm2. As time passed, the concentration of PM decreased more in the chamber with plants than in the empty chamber. Among the 18 indoor plants, the ones with the greatest reduction in PM2.5 in 2 hours and 4 hours of exposure to PM2.5 were Pachira aquatica and Dieffenbachia amoena. As the exposure time of PM increased, the efficiency of reducing PM2.5 was higher in plants with medium-sized leaves than plants with large or small leaves. The effect of reducing PM2.5 was higher in linear leaves than round or lobed leaves. Plants with high total leaf area did not have advantage in reducing PM because the leaves were relatively small and there were many overlapping parts between leaves. In the correlation between leaf characteristics and PM 2.5 reductions, all leaf area and leaf thickness showed a negative and leaf size showed a positive correlation with PM reduction. Conclusion: The PM reduction effect of plants with medium-sized leaves and long linear leaves was relatively high. Moreover, plants with a large total leaf area without overlapping leaves will have advantaged in reducing PM. Plants are effective in reducing PM, and leaf characteristics are an important factor that affects PM reduction.

Effect of milling and sintering process on integrity of zirconia prosthesis: a literature review (밀링과 소결과정이 지르코니아 보철물의 완성도에 미치는 영향에 관한 문헌고찰)

  • Lee, Kiun;Ko, Kyung-Ho;Huh, Yoon-Hyuk;Park, Chan-Jin;Cho, Lee-Ra
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.38 no.3
    • /
    • pp.127-137
    • /
    • 2022
  • Zirconia is fabricated through various processes. Each element in fabricating process can affect the physical properties of the definitive prosthesis. In particular, both the milling process and the sintering process can affect the final integrity of the zirconia prosthesis. Most of the milling machines adopt the ultra-precision 5-axis machining method, and the results vary depending on which milling method was used and how the milling equipment was managed. Milling blocks are selected according to cutting efficiency and aesthetic reproducibility. The sintering method can affect the grain growth and optical properties, and an accurate evaluation can be made only with additional research on the recent speed sintering procedure. Not only the sintering temperature but also the temperature holding time can affect the quality of definitive prosthesis.

Developed Vacuum Film Packaging Method Maintains Quality of Enoki Mushrooms (Flammulina velutipes) during Simulated Vessel Export to Vietnam (팽이버섯의 베트남 모의수출 중 진공포장방법 개선을 통한 품질 유지 효과)

  • Choi, Ji Weon;Lim, Sooyeon;Lee, Ji Hyun;Eum, Hyang Lan;Lee, Jung-Soo;Park, Hye Sung;Im, Ji-Hoon;Do, Kyung Ran
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.28 no.2
    • /
    • pp.133-142
    • /
    • 2022
  • Korean enoki mushrooms are exported to Southeast Asia and the United States, where there are complaints due to quality deterioration during the distribution process. In this study, we evaluated the efficacy of vacuum film packaging on quality maintenance in Korean enoki mushrooms during simulated vessel export to Vietnam using selected film, which was developed with vacuum packaging machine and oxygen absorber. We selected two MA film, one was 2-layerd 30 ㎛ CPP film (control) and the other was 3-layered 30 ㎛ CPP film (treatment) which is optimized film of higher gas and moisture permeability. The Korean enoki mushrooms were packaged with these two films using PAC-2000 or PAC-3000 vacuum packaging machine which was improved vacuuming of higher speed. Packed mushrooms were stored at 1℃ for 2 weeks and distributed at 20℃ for 2 days or 8℃ for 6 days. The efficiency of the film packaging was analyzed by vacuum maintaining index, and overall the quality characteristics such as off odor, color, cap cleavage, stem elongations and sensory evaluation were evaluated during storage and distribution. Results suggest that postharvest loss of fresh enoki mushroom could be reduced by packaging mushroom with 3-layered 30 ㎛ CPP films packaged using PAC-3000 machine during simulated vessel export to Vietnam due to vacuum maintaining. Oxygen absorber promoted off-odor at 20℃ distribution temperature, and did not affect storability at 1℃ storage compared to treated group without oxygen absorber treatment.

A Comparison Analysis of Life Cycle Cost (LCC) of Pumps - In the Focus on Comparison of Excellent and General Products in Water Industry - (Pump의 생애주기 비용(LCC) 비교 분석 - 물산업 우수제품과 일반제품의 비교를 중심으로 -)

  • Park, Woopyung;Choi, Yong;Jeon, Si Young;Kim, Jinho;Kang, Seongmi
    • Korean Journal of Construction Engineering and Management
    • /
    • v.23 no.3
    • /
    • pp.66-73
    • /
    • 2022
  • In order to induce users to purchase excellent products in the water industry that satisfy the technical standards of excellent products, in this study, it is to present the advantages of the cost aspect of the pumps as the objective basis. It will be to promote technology development of domestic water companies and to create a virtuous cycle structure in the water industry. In order to present an objective basis for the merits in terms of cost, an economic evaluation was conducted through life cycle cost analysis. For the LCC analysis, initial cost (pump cost and installation cost), operation cost (energy cost and maintenance cost) and demolition cost (disposal cost and residual value) are searched and calculated. As the results of comparison on two capacity of pumps, the energy cost of the excellent pump is 212 million KRW lower than the that of general pump in the large pump. The cost of excellent pump was 17 million KRW lower than that of general pump in small capacity pump. As the results of sensibility test, if the product is developed in the direction of improving pump efficiency and increasing the replacement cycle of consumables, it is predicted that the effect on LCC will be large.

Effects of the slaughter weight of non-lean finishing pigs on their carcass characteristics and meat quality

  • Oh, Sang-Hyon;Lee, Chul Young;Song, Dong-Heon;Kim, Hyun-Wook;Jin, Sang Keun;Song, Young-Min
    • Journal of Animal Science and Technology
    • /
    • v.64 no.2
    • /
    • pp.353-364
    • /
    • 2022
  • The present study aimed to assess the feasibility of increasing the slaughter weight (SW) of non-lean finishing pigs to improve their meat quality. A total of 36 (Landrace × Yorkshire) × Duroc gilts and barrows were slaughtered at 115 (Av), 125 (Hi), or 135 (XHi) kg, followed by physicochemical analyses and sensory evaluation on their longissimus dorsi (LD) and Semimembranosus (SM) muscles. Backfat thickness was greater (p < 0.05) for the XHi (31.2 mm) and Hi (29.3 mm) groups than for Av (25.0 mm). Dressing percentage and yield of the belly per whole carcass were also slightly greater for XHi and Hi vs. Av. The intramuscular fat (IMF) content of SM was greater for XHi (2.64%) than for Av (1.83%) and Hi (2.04%) and also was correlated with SW (r = 0.55). The pH value, lightness, redness, drip loss, shear force, and moisture and protein contents of LD and SM, as well as IMF content of LD, were unaffected by SW. Percentages of 14:0, 16:0, and total saturated fatty acids (FA) were less for Hi and XHi vs. Av in SM, those of total unsaturated FA, 18:2, 20:4, and n-6 being opposite; FA composition of LM was not influenced by SW except for a reduced 18:0 percentage for XHi vs. Av. The sensory score was less for XHi vs. Av for odor in fresh LD and SM, and less for Hi and XHi vs. Av for aroma in fresh LM; scores for color, drip loss, marbling, and acceptability were unaffected by SW. As for cooked muscles, none of the scores for color, aroma, flavor, juiciness, tenderness, and acceptability was affected by SW, except for a greater LD color score for Hi and XHi vs. Av. Collectively, the results suggested that the increased yield of the carcass and belly due to increased SW is outbalanced negatively by excessive backfat deposition in production efficiency, whereas the SW increase exerts little influence on overall sensory quality of fresh or cooked meat. Production of non-lean market pigs overweighing 115 kg therefore will be uneconomical unless consumers pay a substantial premium for the over-fattened pork.

A Study on the Feasibility of Lead(II) Iodide and Gd2O2S:Tb Overlapping Sensors in Gamma Source Conditions using FLUKA Simulation (FLUKA 전산 모사를 통한 감마선원 조건에서의 요오드화납(II)과 Gd2O2S:Tb가 결합된 센서의 적용가능성 연구)

  • Yang, Seung-Woo;Park, Yoon-Hee;Park, Ji-Koon;Heo, Ye-Ji
    • Journal of the Korean Society of Radiology
    • /
    • v.16 no.4
    • /
    • pp.381-386
    • /
    • 2022
  • Non-Destruction Test (NDT) is a method to check internal defects without destroying the product. Among them, radiographic testing (RT) uses high-energy radiation, so it is very important to prevent radiation exposure of workers. Therefore, in this study, in this study, a radiation sensor structure that improves radiation detection performance compared to the existing PbI2 and can immediately detect accidents in RT was presented. For evaluation, the conversion efficiency was analyzed in the gamma ray source through FLUKA simulation. PbI2 with overlapping Gd2O2S:Tb presented in this study showed a higher radiation sensitivity from 1.22 to 3.22 times than that of non-overlapping PbI2. This indicates that the presented sensor is suitable for use as a radiation sensor for source detection in RT.

A Evaluation of Fire Behavior According to Member Thickness of Precast Prestressed Hollow Core Slab of Fire Resistance Section (프리캐스트 프리스트레스트 내화단면 중공슬래브의 부재두께에 따른 화재거동평가 )

  • Yoon-Seob Boo;Kyu-Woong Bae;Sang-Min Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2023
  • At construction sites, interest in the production of precast materials is increasing due to off-site conditions due to changes in construction site conditions due to increased labor costs and the Act on the Punishment of Serious Accidents. In particular, the precast prestressed hollow slab has a hollow shape in the cross section, so structural performance is secured by reducing weight and controlling deflection through stranded wires. With the application of structural standards, the urgency of securing fire resistance performance is emerging. In this study, a fire-resistance cross section was developed by reducing the concrete filling rate in the cross section and improving the upper and lower flange shapes by optimizing the hollow shape in the cross section of the slab to have the same or better structural performance and economic efficiency compared to the existing hollow slab. The PC hollow slab to which this was applied was subjected to a two-hour fire resistance test using the cross-sectional thickness as a variable, and as a result of the test, fire resistance performance (load bearing capacity, heat shielding property, flame retardance property) was secured. Based on the experimental results, it is determined that fire resistance modeling can be established through numerical analysis simulation, and prediction of fire resistance analysis is possible according to the change of the cross-sectional shape in the future.

Full-mouth rehabilitation with increasing vertical dimension on the patient with severely worn-out dentition and orthognathic surgery history: A case report (악교정수술 병력을 가진 과도한 치아 마모를 보이는 환자의 수직고경 증가를 동반한 전악 수복 증례)

  • Sang-Myeong Tak;Chang-Mo Jeong;Jung-Bo Huh;So-Hyoun Lee;Mi-Jung Yun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.61 no.1
    • /
    • pp.33-43
    • /
    • 2023
  • Pathological wear across the entire dentition causes problems such as collapsed occlusal plane, reduced vertical dimension, anterior premature contact, inadequate anterior guidance, and tooth migration, thereby induce symptoms such as temporomandibular joint disorder, reduced masticatory efficiency, and tooth hypersensitivity. For the treatment of patients with excessive wear, evaluation of vertical dimension should be preceded along with analysis of the cause. The patient in this case was a 45-year-old female with a history of orthognathic surgery. Through clinical examination, radiographic examination, and model analysis, overall tooth wear, interdental spacing in the anterior maxillary region, retruded condylar position, and insufficient interocclusal space for prosthetic restoration were confirmed. Full mouth rehabilitation with increased vertical dimension was planned, the patient's adaptation to the new vertical dimension was evaluated with a removable occlusal splint and temporary prosthesis, and cross-mounting was performed based on the temporary restoration to fabricate the definitive zirconia prosthesis, maintaining the adjusted vertical dimension. It showed satisfactory functional and esthetic results through stable restoration of the occlusal relationship.

Application and Adequacy Evaluation of Mobile Sewage Treatment Facilities for Concrete Wastewater Treatment Generated during Construction (공사 중 발생되는 콘크리트 폐수처리를 위한 이동식 오수처리 시설의 적용 및 적정성 평가)

  • Wooseok Jeong;Kyungik Gil
    • Journal of Wetlands Research
    • /
    • v.25 no.2
    • /
    • pp.91-98
    • /
    • 2023
  • Some concrete wastewater generated during construction is in the form of non-point pollution sources that workers, managers, and users are unaware of, and it is not easy to manage as it flows through sewage pipes. Due to these characteristics, construction sludge is inflow into rivers and sewage pipes in the form of non-point pollution sources in an unmanaged state. This study applied the D.W.S method to the concrete retaining wall removal method installed on the road, and the resulting concrete wastewater was physically and chemically treated through a mobile sewage treatment facility, and it was examined whether it met the removal efficiency and wastewater discharge acceptance standards. Accordingly, it is intended to meet the standards for effluent concentration of wastewater during construction by removing 73.5% of BOD and 89.1% of SS through physical and chemical treatment through portable sewage treatment facilities during construction. In addition, we would like to review the adequacy and economic analysis of calculating environmental conservation costs for physicochemical treatment through portable sewage treatment facilities and sewage treatment generated during construction.