• Title/Summary/Keyword: Effector Functions

Search Result 87, Processing Time 0.022 seconds

Interleukin-7 Enhances the in Vivo Anti-tumor Activity of Tumor-reactive CD8+ T cells with Induction of IFN-gamma in a Murine Breast Cancer Model

  • Yuan, Chun-Hui;Yang, Xue-Qin;Zhu, Cheng-Liang;Liu, Shao-Ping;Wang, Bi-Cheng;Wang, Fu-Bing
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.1
    • /
    • pp.265-271
    • /
    • 2014
  • Interleukin-7 (IL-7) is a potent anti-apoptotic cytokine that enhances immune effector cell functions and is essential for lymphocyte survival. While it known to induce differentiation and proliferation in some haematological malignancies, including certain types of leukaemias and lymphomas, little is known about its role in solid tumours, including breast cancer. In the current study, we investigated whether IL-7 could enhance the in vivo antitumor activity of tumor-reactive $CD8^+$ T cells with induction of IFN-${\gamma}$ in a murine breast cancer model. Human IL-7 cDNA was constructed into the eukaryotic expression plasmid pcDNA3.1, and then the recombinational pcDNA3.1-IL-7 was intratumorally injected in the TM40D BALB/C mouse graft model. Serum and intracellular IFN-${\gamma}$ levels were measured by ELISA and flow cytometry, respectively. $CD8^+$ T cell-mediated cytotoxicity was analyzed using the MTT method. Our results showed that IL-7 administration significantly inhibited tumor growth from day 15 after direct intratumoral injection of pcDNA3.1-IL-7. The anti-tumor effect correlated with a marked increase in the level of IFN-${\gamma}$ and breast cancer cells-specific CTL cytotoxicity. In vitro cytotoxicity assays showed that IL-7-treatment could augment cytolytic activity of $CD8^+$ T cells from tumor bearing mice, while anti-IFN-${\gamma}$ blocked the function of $CD8^+$ T cells, suggesting that IFN-${\gamma}$ mediated the cytolytic activity of $CD8^+$ T cells. Furthermore, in vivo neutralization of $CD8^+$ T lymphocytes by CD8 antibodies reversed the antitumor benefit of IL-7. Thus, we demonstrated that IL-7 exerts anti-tumor activity mainly through activating $CD8^+$ T cells and stimulating them to secrete IFN-${\gamma}$ in a murine breast tumor model. Based on these results, our study points to a potential novel way to treat breast cancer and may have important implications for clinical immunotherapy.

CCR5 deficiency in aged mice causes a decrease in bone mass

  • Oh, Eun-Ji;Zang, Yaran;Kim, Jung-Woo;Lee, Mi Nam;Song, Ju Han;Oh, Sin-Hye;Kwon, Seung Hee;Yang, Jin-Woo;Koh, Jeong-Tae
    • International Journal of Oral Biology
    • /
    • v.44 no.4
    • /
    • pp.173-181
    • /
    • 2019
  • The CC chemokine receptor 5 (CCR5) is a G protein-coupled receptor that regulates chemotaxis and effector functions of immune cells. It also serves as the major co-receptor for the entry of human immunodeficiency virus (HIV). Recently, CCR5 inhibitors have been developed and used for the treatment or prevention of HIV infections. Additionally, it has been identified that CCR5 controls bone homeostasis by regulating osteoclastogenesis and the communication between osteoblasts and osteoclasts. However, the effects of CCR5 inhibition on bone tissue in elderly patients are unknown. This study aimed to examine the bone phenotype of aged CCR5 knockout (KO) mice. Femoral and tibial bones were isolated from 12-month and 18-month old wild-type (WT) and CCR5 KO mice, and microcomputed tomography and histology analyses were performed. Twelve-month-old CCR5 KO mice exhibited a decreased trabecular bone mass and cortical bone thickness in both femoral and tibial bones compared with age-matched WT mice. Eighteen-month-old mice also showed a decreased trabecular bone mass in femurs compared with control WT mice, but not in tibial bones. Unlike in 12-month-old mice, the cortical margin of femurs and tibias in 18-month-old mice were rough, likely because they were aggravated by the deficiency of CCR5. Overall, our data suggest that the deficiency of CCR5 with aging can cause severe bone loss. When CCR5 inhibitors or CCR5 inactivating technologies are used in elderly patients, a preventive strategy for bone loss should be considered.

Glatiramer acetate inhibits the activation of NFκB in the CNS of experimental autoimmune encephalomyelitis (Glatiramer acetate 투여에 의한 자가면역성 뇌척수염 마우스의 중추신경계에서의 NFκB 활성 억제)

  • Hwang, Insun;Ha, Danbee;Kim, Dae Seung;Joo, Haejin;Jee, Youngheun
    • Korean Journal of Veterinary Research
    • /
    • v.51 no.3
    • /
    • pp.217-225
    • /
    • 2011
  • Glatiramer acetate (GA; Copaxone) has been shown to be effective in preventing and suppressing experimental autoimmune encephalomyelitis (EAE), the animal model of multiple sclerosis (MS). It has been recently shown that GA-reactive T cells migrate through the blood-brain barrier, accumulate in the central nervous system (CNS), secrete antiinflammatory cytokines and suppress production of proinflammatory cytokines of EAE and MS. Development of EAE requires coordinated expression of a number of genes involved in the activation and effector functions of inflammatory cells. Activation of inflammatory cells is regulated at the transcriptional level by several families of transcription factors. One of these is the nuclear factor kappa B ($NF{\kappa}B$) family which is present in a variety of cell types and involved in the activation of immune-relative genes during inflammatory process. Since it is highly activated at site of inflammation, $NF{\kappa}B$ activation is also implicated in the pathogenesis of EAE. In this study, we examined whether the inhibition of $NF{\kappa}B$ activation induced by GA can have suppressive therapeutic effects in EAE mice. We observed the expression of $NF{\kappa}B$ and phospho-$I{\kappa}B$ proteins increased in GA-treated EAE mice compared to EAE control groups. The immunoreactivity in inflammatory cells and glial cells of $NF{\kappa}B$ and phospho-$I{\kappa}B$ significantly decreased at the GA-treated EAE mice. These results suggest that treatment of GA in EAE inhibits the activation of $NF{\kappa}B$ and phophorylation of $I{\kappa}B$ in the CNS. Subsequently, the inhibition of $NF{\kappa}B$ activation and $I{\kappa}B$ phosphorylation leads to the anti-inflammatory effects thereby to reduce the progression and severity of EAE.

Phenotypic Suppression of Rad53 Mutation by CYC8 (CYC8에 의한 rad53 돌연변이의 표현형 억제에 대한 연구)

  • Park, Kyoung-Jun;Choi, Do-Hee;Kwon, Sung-Hun;Kim, Joon-Ho;Bae, Sung-Ho
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.122-126
    • /
    • 2010
  • RAD53 functions as an effector kinase of checkpoint pathways in Saccharomyces cerevisiae, which plays a central role to regulate many downstream cellular processes in response to DNA damage. It also involves in transcriptional activation of various genes including RNR genes which encode the key enzyme required for dNTP synthesis. In this study, we identified CYC8 as a suppressor for the hydroxyurea sensitivity of $rad53{\Delta}$ mutation. $Rad53{\Delta}$ mutant transformed with a multi-copy plasmid containing CYC8 showed increased hydroxyurea resistance. In contrast, TUP1 which forms a complex with CYC8 did not function as a suppressor. In the case of mutations, both $cyc8{\Delta}$ and $tup1{\Delta}$ suppressed hydroxyurea sensitivity of $rad53{\Delta}$. Since CYC8 can propagate as a prion in yeast, overexpression of CYC8 induced misfolding of the normal CYC8 proteins, resulting in dominant cyc8-phenotype. Therefore, it is suggested that CYC8 can act as a multi-copy suppressor due to its prion property. It was observed that the levels of RNR transcription were increased in the yeast strains containing either multi-copies of CYC8 gene or $cyc8{\Delta}$ mutation, suggesting that the increased level of RNR will elevate the intracellular pools of dNTPs, which, in turn, suppress the phenotype of $rad53{\Delta}$ mutation.

Nucleomodulin BspJ as an effector promotes the colonization of Brucella abortus in the host

  • Ma, Zhongchen;Yu, Shuifa;Cheng, Kejian;Miao, Yuhe;Xu, Yimei;Hu, Ruirui;Zheng, Wei;Yi, Jihai;Zhang, Huan;Li, Ruirui;Li, Zhiqiang;Wang, Yong;Chen, Chuangfu
    • Journal of Veterinary Science
    • /
    • v.23 no.1
    • /
    • pp.8.1-8.15
    • /
    • 2022
  • Background: Brucella infection induces brucellosis, a zoonotic disease. The intracellular circulation process and virulence of Brucella mainly depend on its type IV secretion system (T4SS) expressing secretory effectors. Secreted protein BspJ is a nucleomodulin of Brucella that invades the host cell nucleus. BspJ mediates host energy synthesis and apoptosis through interaction with proteins. However, the mechanism of BspJ as it affects the intracellular survival of Brucella remains to be clarified. Objectives: To verify the functions of nucleomodulin BspJ in Brucella's intracellular infection cycles. Methods: Constructed Brucella abortus BspJ gene deletion strain (B. abortus ∆BspJ) and complement strain (B. abortus pBspJ) and studied their roles in the proliferation of Brucella both in vivo and in vitro. Results: BspJ gene deletion reduced the survival and intracellular proliferation of Brucella at the replicating Brucella-containing vacuoles (rBCV) stage. Compared with the parent strain, the colonization ability of the bacteria in mice was significantly reduced, causing less inflammatory infiltration and pathological damage. We also found that the knockout of BspJ altered the secretion of cytokines (interleukin [IL]-6, IL-1β, IL-10, tumor necrosis factor-α, interferon-γ) in host cells and in mice to affect the intracellular survival of Brucella. Conclusions: BspJ is extremely important for the circulatory proliferation of Brucella in the host, and it may be involved in a previously unknown mechanism of Brucella's intracellular survival.

The Effect of Hydrogen Peroxide on Inducible Nitric Oxide Synthase Expression in Murine Macrophage RA W264.7 Cells (Murine macrophage RAW264.7에서 과산화수소가 유발형 산화질소 합성효소의 발현에 미치는 영향)

  • Ahn, Joong-Hyun;Song, Jeong-Sup
    • Tuberculosis and Respiratory Diseases
    • /
    • v.47 no.2
    • /
    • pp.172-183
    • /
    • 1999
  • Background: Nitric oxide is a short-lived effector molecule derived from L-arginine by the nitric oxide synthase(NOS). Nitric oxide plays a role in a number of physiologic and pathophysiologic functions including host defense, edema formation, and regulation of smooth muscle tone. Some kinds of cells including macrophage are known to produce large quantities of nitric oxide in response to inflammatory stimuli such as interleukin-$1\beta$(IL-$1\beta$), tumor necrosis factor-$\alpha$(TNF-$\alpha$), interferon-$\gamma$(IFN-$\gamma$) and lipopolysaccharide(LPS). Reactive oxygen species are also known to be important in the pathogenesis of acute cell and tissue injury such as acute lung injury model Methods: Using the RA W264.7 cells, we have examined the ability of oxidant hydrogen peroxide($H_2O_2$) to stimulate nitric oxide production and inducible NOS mRNA expression. Also, we have examined the effects of NOS inhibitors and antioxidants on $H_2O_2$ induced nitric oxide production. Results: Stimulation of RAW264.7 cells with combinations of 100 ng/ml IL-$1\beta$, 100 ng/ml TNF-$\alpha$, and 100 U/ml IFN-$\gamma$ or 100 U/ml IFN-$\gamma$ and $1{\mu}g/ml$ LPS induced the synthesis of nitric oxide as measured by the oxidation products nitrite($NO_2^-$) and nitrate($NO_3^-$). Addition of $250 {\mu}M-2$ mM $H_2O_2$ to the cytokines significantly augmented the synthesis of $NO_2^-$ and $NO_3^-$(p<0.05). When cells were incubated with increasing concentrations of $H_2O_2$ in the presence of IL-$1\beta$, TNF-$\alpha$ and IFN-$\gamma$ at constant level, the synthesis of $NO_2^-$ and $NO_3^-$ was dose-dependently increased(p<0.05). $N^G$-nitro-L-arginine methyl ester(L-NAME), dose dependently, significantly inhibited the formation of $NO_2^-$ and $NO_3^-$ in cells stimulated with LPS, IFN-$\gamma$ and $H_2O_2$ at constant level(p<0.05). Catalase significantly inhibited the $H_2O_2$-induced augmentation of cytokine-induced $NO_2^-$ and $NO_3^-$ formation(p<0.05). But, boiled catalase did not produce a significant inhibition in comparison with the native enzyme. Another antioxidant 2-mercaptoethanol and orthophenanthroline dose-dependently suppressed $NO_2^-$ and $NO_3^-$ synthesis(p<0.05). Northern blotting demonstrated that H:02 synergistically stimulated the cytokine-induced iNOS mRNA expression in RA W264.7. Conclusion: These results suggest that $H_2O_2$ contributes to inflammatory process by augmenting the iNOS expression and nitric oxide synthesis induced by cytokines.

  • PDF

Potassium Physiology of Upland Crops (밭 작물(作物)의 가리(加里) 생리(生理))

  • Park, Hoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.3
    • /
    • pp.103-134
    • /
    • 1977
  • The physiological and biochemical role of potassium for upland crops according to recent research reports and the nutritional status of potassium in Korea were reviewed. Since physical and chemical characteristics of potassium ion are different from those of sodium, potassium can not completely be replaced by sodium and replacement must be limited to minimum possible functional area. Specific roles of potassium seem to keep fine structure of biological membranes such as thylacoid membrane of chloroplast in the most efficient form and to be allosteric effector and conformation controller of various enzymes principally in carbohydrate and protein metabolism. Potassium is essential to improve the efficiency of phoro- and oxidative- phosphorylation and involve deeply in all energy required metabolisms especially synthesis of organic matter and their translocation. Potassium has many important, physiological functions such as maintenance of osmotic pressure and optimum hydration of cell colloids, consequently uptake and translocation of water resulting in higher water use efficiency and of better subcellular environment for various physiological and biochemical activities. Potassium affects uptake and translocation of mineral nutrients and quality of products. potassium itself in products may become a quality criteria due to potassium essentiality for human beings. Potassium uptake is greatly decreased by low temperature and controlled by unknown feed back mechanism of potassium in plants. Thus the luxury absorption should be reconsidered. Total potassium content of upland soil in Korea is about 3% but the exchangeable one is about 0.3 me/100g soil. All upland crops require much potassium probably due to freezing and cold weather and also due to wet damage and drought caused by uneven rainfall pattern. In barley, potassium should be high at just before freezing and just after thawing and move into grain from heading for higher yield. Use efficiency of potassium was 27% for barley and 58% in old uplands, 46% in newly opened hilly lands for soybean. Soybean plant showed potassium deficiency symptom in various fields especially in newly opened hilly lands. Potassium criteria for normal growth appear 2% $K_2O$ and 1.0 K/(Ca+Mg) (content ratio) at flower bud initiation stage for soybean. Potassium requirement in plant was high in carrot, egg plant, chinese cabbage, red pepper, raddish and tomato. Potassium content in leaves was significantly correlated with yield in chinese cabbage. Sweet potato. greatly absorbed potassium subsequently affected potassium nutrition of the following crop. In the case of potassium deficiency, root showed the greatest difference in potassium content from that of normal indicating that deficiency damages root first. Potatoes and corn showed much higher potassium content in comparison with calcium and magnesium. Forage crops from ranges showed relatively high potassium content which was significantly and positively correlated with nitrogen, phosphorus and calcium content. Percentage of orchards (apple, pear, peach, grape, and orange) insufficient in potassium ranged from 16 to 25. The leaves and soils from the good apple and pear orchards showed higher potassium content than those from the poor ones. Critical ratio of $K_2O/(CaO+MgO)$ in mulberry leaves to escape from winter death of branch tip was 0.95. In the multiple croping system, exchangeable potassium in soils after one crop was affected by the previous crops and potassium uptake seemed to be related with soil organic matter providing soil moisture and aeration. Thus, the long term and quantitative investigation of various forms of potassium including total one are needed in relation to soil, weather and croping system. Potassium uptake and efficiency may be increased by topdressing, deep placement, slow-releasing or granular fertilizer application with the consideration of rainfall pattern. In all researches for nutritional explanation including potassium of crop yield reasonable and practicable nutritional indices will most easily be obtained through multifactor analysis.

  • PDF