• Title/Summary/Keyword: Effective-Strain Distribution

Search Result 175, Processing Time 0.024 seconds

Nonlinear forced vibration of FG-CNTs-reinforced curved microbeam based on strain gradient theory considering out-of-plane motion

  • Allahkarami, Farshid;Nikkhah-bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • v.26 no.6
    • /
    • pp.673-691
    • /
    • 2018
  • The main goal of this research is to examine the in-plane and out-of-plane forced vibration of a curved nanocomposite microbeam. The in-plane and out-of-plane displacements of the structure are considered based on the first order shear deformation theory (FSDT). The curved microbeam is reinforced by functionally graded carbon nanotubes (FG-CNTs) and thus the extended rule of mixture is employed to estimate the effective material properties of the structure. Also, the small scale effect is captured using the strain gradient theory. The structure is rested on a nonlinear orthotropic viscoelastic foundation and is subjected to concentrated transverse harmonic external force, thermal and magnetic loads. The derivation of the governing equations is performed using energy method and Hamilton's principle. Differential quadrature (DQ) method along with integral quadrature (IQ) and Newmark methods are employed to solve the problem. The effect of various parameters such as volume fraction and distribution type of CNTs, boundary conditions, elastic foundation, temperature changes, material length scale parameters, magnetic field, central angle and width to thickness ratio are studied on the frequency and force responses of the structure. The results indicate that the highest frequency and lowest vibration amplitude belongs to FGX distribution type while the inverse condition is observed for FGO distribution type. In addition, the hardening-type response of the structure with FGX distribution type is more intense with respect to the other distribution types.

Elastic stability of functionally graded graphene reinforced porous nanocomposite beams using two variables shear deformation

  • Fortas, Lahcene;Messai, Abderraouf;Merzouki, Tarek;Houari, Mohammed Sid Ahmed
    • Steel and Composite Structures
    • /
    • v.43 no.1
    • /
    • pp.31-54
    • /
    • 2022
  • This paper is concerned with the buckling behavior of functionally graded graphene reinforced porous nanocomposite beams based on the finite element method (FEM) using two variables trigonometric shear deformation theory. Both Young's modulus and material density of the FGP beam element are simultaneously considered as grading through the thickness of the beam. The finite element approach is developed using a nonlocal strain gradient theory. The governing equations derived here are solved introducing a 3-nodes beam element, and then the critical buckling load is calculated with different porosity distributions and GPL dispersion patterns. After a convergence and validation study to verify the accuracy of the present model, a comprehensive parametric study is carried out, with a particular focus on the effects of weight fraction, distribution pattern of GPL reinforcements on the Buckling behavior of the nanocomposite beam. The effects of various structural parameters such as the dispersion patterns for the graphene and porosity, thickness ratio, boundary conditions, and nonlocal and strain gradient parameters are brought out. The results indicate that porosity distribution and GPL pattern have significant effects on the response of the nanocomposite beams, and the results allows to identify the most effective way to achieve improved buckling behavior of the porous nanocomposite beam.

Body Pressure Distribution and Textile Surface Deformation Measurement for Quantification of Automotive Seat Design Attributes (운전자의 체압 분포 및 시트변형에 대한 정량화 측정시스템)

  • Kwon, Yeong-Eun;Kim, Yun-Young;Lee, Yong-Goo;Lee, Dongkyu;Kwon, Ohwon;Kang, Shin-Won;Lee, Kang-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.397-402
    • /
    • 2018
  • Proper seat design is critical to the safety, comfort, and ergonomics of automotive driver's seats. To ensure effective seat design, quantitative methods should be used to evaluate the characteristics of automotive seats. This paper presents a system that is capable of simultaneously monitoring body pressure distribution and surface deformation in a textile material. In this study, a textile-based capacitive sensor was used to detect the body pressure distribution in an automotive seat. In addition, a strain gauge sensor was used to detect the degree of curvature deformation due to high-pressure points. The textile-based capacitive sensor was fabricated from the conductive fabric and a polyurethane insulator with a high signal-to-noise ratio. The strain gauge sensor was attached on the guiding film to maximize the effect of its deformation due to bending. Ten pressure sensors were placed symmetrically in the hip area and six strain gauge sensors were distributed on both sides of the seat cushion. A readout circuit monitored the absolute and relative values from the sensors in realtime, and the results were displayed as a color map. Moreover, we verified the proposed system for quantifying the body pressure and fabric deformation by studying 18 participants who performed three predefined postures. The proposed system showed desirable results and is expected to improve seat safety and comfort when applied to the design of various seat types. Moreover, the proposed system will provide analytical criteria in the design and durability testing of automotive seats.

A study on plane-strain forging using UBET (상계요소법을 이용한 평면변형 단조에 관한 연구)

  • 이종헌;김진욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.7-15
    • /
    • 1998
  • An upper bound elemental technique(UBET) program has been developed to analyze forging load, die-cavity filling and effective strain distribution for flash and flashless forgings. The program consists of forward and backward tracing processes. In the forward program, flash, die filling and forging load are predicted. In backward tracing process, the optimum dimensions of initial billet in conventional forging are determined from the final-shape data based on flash design. And the analysis is described for merit of flashless precision forging. Experiments are carried out with pure plasticine billets at room temperature. The theoretical predictions of forging load and flow pattern are in good agreement with the experimental results.

  • PDF

Prediction of Consolidational Settlement of Dredged and Reclaimed Ground (준설매립토지반의 압밀침하량 예측)

  • Yoo, Nam-Jae;Park, Byung-Soo;Jeong, Gil-Soo
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.317-327
    • /
    • 2001
  • For soils with high void ratios, the inverse method of utilizing results obtained from centrifuge model test was used to find the constitutive relation of effective stress - void ratio - permeability whereas conventional oedometer test and constant rate of strain consolidation test were also used to fine its relation at ranges of relatively low void ratio. Results of column test about settlement of interface and pore pressure and distribution with time were compared with numerically estimated values to confirm such a constitutive relation as obtained from the inverse method. Consolidational settlement in dredged and reclaimed ground, where the consolidation was in progress, was predicted by using the numerical technique implemented with the finite strain consolidation theory.

  • PDF

A study on the stress Distributions and magnetic properties during Hot-pressing according to Strain Rate of Nd-Fe-B-Cu Alloys (Nd-Fe-B-Cu합금의 변형속도에 따른 열간압축시 응력분포와 자기적 특성에 관한 연구)

  • Park, J.D.;Jeung, W.Y.;Kwak, C.S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.2
    • /
    • pp.146-153
    • /
    • 1993
  • Thd specimens were melited in high frequency induction furnace. The samples for measurements were prepared by machining cylinder of 9.5mm diameter and 15mm height. These samples were then hot-pressed according to strain rate ( .epsilon. ). These samples were decanned and cut out, and subsequently heat treated at 1000 .deg. C for 4hours. These were investigated for the change of microstructure, domain pattern, X-ray diffraction and magnetic properties. The stress distributions in the specimens during compressing process were calculated by a finite element method program(SPID). The calculated stresses were effective stress( .sigma. $_{eff}$), compressive direction stress( .sigma. $_{z}$), and shear stress( .tau. $_{rz}$ ). These stresses were compared with the experimental data.a.a.

  • PDF

Estimation of Hardfacing Material and Thickness of STD61 Hot-Working Tool Steels Through Three-Dimensional Heat Transfer and Thermal Stress Analyses (3 차원 열전달/열응력 해석을 통한 STD61 열간 금형강의 하드페이싱 재료 및 두께 예측)

  • Park, Na-Ra;Ahn, Dong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.427-436
    • /
    • 2014
  • The goal of this paper is to estimate proper hardfacing material and thickness of STD61 hot-working tool steel through three-dimensional heat transfer and thermal stress analyses. Stellite6, Stellite21 and 19-9DL superalloys are chosen as alternative hardfacing materials. The influence of hardfacing materials and thicknesses on temperature, thermal stress and thermal strain distributions of the hardfaced part are investigated using the results of the analyses. From the results of the investigation, it has been noted that a hardfacing material with a high conductivity and a thinner hardfaced layer are desired to create an effective hardfacing layer in terms of heat transfer characteristics. In addition, it has been revealed that the deviation of effective stress and principal strain in the vicinity of the joined region are minimized when the Stellite21 hardfaced layer with the thickness of 2 mm is created on the STD61. Based on the above results, a proper hardfacing material and thickness for STD61 tool steel have been estimated.

The Present State and Behavior Characteristics of Water Supply Tunnel (수로터널의 유지관리 현황 및 거동특성)

  • Jeon, Je-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.179-190
    • /
    • 2006
  • The water supply tunnel has different characteristics which play a important role in stable water supply to the public from mechanical behavior and maintenance in comparison with road md railway tunnel. In this study, the present state and characteristics of water supply tunnels controlled by K-water have been investigated. The distribution of effective stresses that takes into account the effect of seepage forces induced by internal water pressure are estimated from closed-form and numerical method. The analysis of stress-strain behavior, seepage problem and hydrojacking for ensuring safety of existing water supply tunnel against neighboring new construction has been conducted.

  • PDF

Strain Evolution in High-Mn Steel Ellipsoidal Vessel Head during Multi-forming Process: A Finite Element Analysis (다단 성형 공정 시 고-Mn 강의 타원형 용기 헤드에서의 변형률 분포: 유한요소해석)

  • Preetham Alluri;Lalit Kaushik;Shi-Hoon Choi
    • Transactions of Materials Processing
    • /
    • v.32 no.5
    • /
    • pp.268-275
    • /
    • 2023
  • ISO 21029 cryogenic vessel is used to transport cryogenic fluids. High-manganese steel (High-Mn steel) is widely regarded as suitable for use at cryogenic temperatures. The conventional way of manufacturing an ellipsoidal vessel head involves incremental stretching, followed by a spinning process. In this study, an alternative method for forming an ellipsoidal vessel head was proposed. Finite element analysis (FEA) was used to theoretically examine the strain evolution during a multi-stage forming process, which involved progressive stretching, deep drawing, and spinning of High-Mn steel. The distribution of effective strain and strain components were analyzed at different regions of the formed part. The FEA results revealed that only normal strains were evident in the dished region of the vessel head due to the stretching process. However, the flange region experienced complex strain evolution during the subsequent deep drawing and spinning process.

Analysis of bone-remodeling by the influence of external fixator with FEM (FEM을 이용한 외부고정구 영향에 의한 골-재형성에 대한 해석)

  • 김영은;이원식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.436-444
    • /
    • 1991
  • A computational method has been developed to analyze the bone-remodeling induced by external fixator. The method was based on the Finite Element Method (FEM) in combination with numerical formulation of adaptive bone-remodeling theories. As a feed-back control variable, compressive strain and effective stress were used to determine the surface remodeling and internal (density) remodeling respectively. Surface remodeling and internal remodeling were combined at each time step to predict the rel situation. A noticeable shape and density change were detected at the region between two pins and density change was decreased with time increment. At final time step, the shape and density distribution were converged closely to its original intact bone model. Similar change was detected in stress distribution. The altered stress distribution due to the pin and external fixator converged to the intact stress distribution with time.