• Title/Summary/Keyword: Effective volume

Search Result 2,413, Processing Time 0.051 seconds

Silicone oil에 기초한 microemulsion을 이용한 DNAPL의 제거

  • 권태순;백기태;이재영;양중석;양지원
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.479-482
    • /
    • 2003
  • In this study, the solubilization of dense nonaqueous phase liquid (DNAPL) using oil-based emulsion was investigated for aquifer remediation. The micro-sized oil emulsion has large surface areas and buoyancy force, therefore it can be effective in treating DNAPL pool of the aquifer without downward migration of DNAPLs. The emulsion was prepared using silicone oil and mechanical homogenization. And the prepared emulsion had micro-sized similar distribution: 99 % in number and 80 % in volume were less than 10${\mu}{\textrm}{m}$. As target pollutants, trichloroethylene and 1, 2 dichlorobenzene were selected. All of used DNAPLs were solubilized successfully in oil-based emulsion. Even at low oil percentage, emulsion showed good solubility against pollutants. Therefore, the remediation using oil-based emulsion was considered as an effective alternative in dealing with DNAPLs of the aquifer.

  • PDF

Cytogenetic Analysis of All-Female Triploid Olive Flounder Paralichthys olivaceus for Ploidy Verification (전 암컷 3배체 넙치(Paralichthys olivaceus)에 대한 효율적인 세포유전학 분석법)

  • Ko, Min Gyun;Jung, Hyo Sun;Lee, Hyo Bin;Kim, Dong Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.5
    • /
    • pp.671-674
    • /
    • 2016
  • We cytogenetically analyzed a triploid King-Nupchi strain of the olive flounder Paralichthys olivaceus to define the simplest, most rapid, and most effective method of ploidy analysis in aquaculture farms. Female triploidy of the flounder King-Nupchi strain was induced by cold shock (3 min post-fertilization at 2-4℃ for 45 min). Triploid induction was confirmed by erythrocyte measurement (nuclear volume, 29.15±2.10 μm3); flow cytometry (2.14±0.03 pg/cell); chromosome count (3N=72); Ag-NOR banding; and silver staining. Silver staining of finned cells obtained using a solid tissue technique was the most effective method of ploidy verification.

A Study on the Measurement for the Recovery Stress of Intelligent Composite by Experiment (실험법에 의한 지능성 복합체의 회복응력 측정에 관한 연구)

  • Hawong, Jai-Sug;Lee, Hyo-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.515-523
    • /
    • 2003
  • Shape memory is physical phenomenon which a platically metal is restored to its original shape by a solid state phase change by heating. TiNi alloy the most effective material in the shape memory alloy(SMA). To study(measure) recovery stress of intelligent composite. Ti50-Ni50 shape memory matrix with prestrain SMA fiber. When SMA fiber of the intelligent composite is heated over austenite starting temperature(As) by electric heating. a recovery stress are generated. The recovery stress of the intelligent composite was measured by strain gage or photoelastic experiment. Measuring method of recovery stress by photoelastic experiment was developed in this research. It was certified that photoelastic experiment was more effective and more precise than strain gage method in the measurement of recovery stress.

Metal-assisted grown Si films and semiconducting nanowires for solar cells

  • Kim, Jun-Dong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.13-13
    • /
    • 2010
  • The solar energy conversion will take 10 % global energy need by 2033. A thin film type solar cell has been considered as one of the promising candidates for a large area applicable solar cell fabrication at a low cost. The metal-assisted growth of microcrystalline Si (mc-Si) films has been reported for a quality Si film synthesis at a low temperature. It discusses the spontaneous growth of a Si film above a metal-layer for a thin film solar cell. Quite recently, a substantial demand of nanomaterials has been addressed for cost-effective solar cells. The nanostructure provides a large photoactive surface at a fixed volume, which is an advantage in the effective use of solar power. But the promising of nanostructure active solar cell has not been much fulfilled due mainly to the difficulty in architecture of nanostructures. We present here the Si nanowire (SiNW)-embedded Schottky solar cell. Multiple SiNWs were connected to two different metals to form a Schottky or an ohmic contact according to the metal work function values. It discusses the scheme of rectifying contact between metals and SiNWs and the SiNW-embedded Schottky solar cell performances.

  • PDF

Radial flow advancement in multi-layered preform for resin transfer molding

  • Shin, K.S.;Song, Y.S.;Youn, J.R.
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.4
    • /
    • pp.217-224
    • /
    • 2006
  • Rapid flow advancement without void formation is essential in the liquid composite molding (LCM) such as resin transfer molding (RTM) and vacuum assisted resin transfer molding (VARTM). A highly permeable layer in multi-layered preform has an important role in improvement of the flow advancement. In this study, a multi-layered preform which consists of three layers is employed. Radial flow experiment is carried out for the multi-layered preform. A new analytic model for advancement of flow front is proposed and effective permeability is defined. The effective permeability for the multi-layered preform is obtained analytically and compared with experimental results. Compaction test is performed to determine the exact fiber volume traction of each layer in the multi-layered preform. Transverse permeability employed in modeling is measured experimentally unlike the previous studies. Accurate prediction of flow advancement is of great use for saving the processing time and enhancing product properties of the final part.

Quantitative Assessment of Variation in Poroelastic Properties of Composite Materials Using Micromechanical RVE Models

  • Han, Su Yeon;Kim, Sung Jun;Shin, Eui Sup
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.2
    • /
    • pp.175-183
    • /
    • 2016
  • A poroelastic composite material, containing different material phases and filled with fluids, serves as a model to formulate the overall ablative behaviors of such materials. This article deals with the assessment of variation in nondeterministic poroelastic properties of two-phase composite materials using micromechanical representative volume element (RVE) models. Considering the configuration and arrangement of pores in a matrix phase, various RVEs are modeled and analyzed according to their porosity. In order to quantitatively investigate the effects of microstructure, changes in effective elastic moduli and poroelastic parameters are measured via finite element (FE) analysis. The poroelastic parameters are calculated from the effective elastic moduli and the pore-pressure-induced strains. The reliability of the numerical results is verified through image-based FE models with the actual shape of pores in carbon-phenolic ablative materials. Additionally, the variation of strain energy density is measured, which can possibly be used to evaluate microstress concentrations.

Numerical Study of Cyclone Dust Collector (싸이클론 집진기의 수치해석적 연구)

  • 전영남;엄태인
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.12 no.1
    • /
    • pp.43-53
    • /
    • 1996
  • Numerical simulation was performed for the 3-dimensional flow filed of gas and particle phase for cyclone dust collector. FVM(Finite Volume Method) was employed for gas phase. The flow was solved suing the k-.varepsilon. epsilon turbulence model. The particle exit at the bottom of the cone was treated as a solid wall in this model because the gas flow through the effective dust exit is usually insignificant. The major parameters considered in this study was vortex finder diameter, effective dust exit diameterm vortex finder length, inlet type for dimension performance. Particle trajectory calculations were made for three different, particle sizes of 1, 25 and 50 .mu.m. The results obtained from this study give some physical insight of dust particle collection mechanism together with the indication of the collection efficiency. The simulation results were in generally good agreement with empirical knowledge. The application of this kind of computer program looks promising as a potential tool for the design of cyclone and determination of optimum operating condition.

  • PDF

Fluid Flow Characteristics of $AL_2O_3$ Nanoparticles Suspended in Water (알루미나 나노유체의 유동 특성에 관한 연구)

  • Lee, Ji-Hwan;Jang, Seok-Pil
    • Proceedings of the SAREK Conference
    • /
    • 2005.11a
    • /
    • pp.546-551
    • /
    • 2005
  • In this paper we report fluid flow characteristics of $AL_2O_3$ nanoparicles suspended in water. Especially, the effects of volume fraction with the range of 0.01% to 0.3% and inner diameter of tubes on the pressure drop and the effective viscosity of $AL_2O_3$ nanoparicles suspended in water are experimentally investigated. Experimental results are compared with analytic solution which can be derived with Einstein model. We confirm whether Einstein model which have been used to determine the effective viscosity of nanofluids is valid or not.

  • PDF

Finite Element Analysis of Glass Lens Forming Process Using Open Die (개방형 금형을 이용한 유리 렌즈 성형 해석)

  • 나진욱;임성한;오수익;전병희
    • Transactions of Materials Processing
    • /
    • v.12 no.4
    • /
    • pp.296-301
    • /
    • 2003
  • Though a glass tens has outstanding optical performance, it has not been widely used because manufacturing process shows poor productivity and high cost. However, press-forming method of glass lens overcomes these disadvantages with mass production. When glass lens is produced by press-forming method using closed die, it is needed that the volume of glass lens preform is precisely measured in order to prevent incomplete products and to increase in life of die. The present. paper shows the shortcoming of forming process with closed die, and performs FEM simulation of forming process with open die in order to overcome this shortcoming. The design parameters of open die are selected on the basis of assembly with optical module and maintenance of optical performance. FEM simulation is carried out with selected parameter of open die and two basic preform. According to distribution of effective strain in glass lens, optical property of glass lens formed at each set of die and preform is compared.

Effective Route Scheduling for Military Cargo-Plane Operation (군 수송기 운영 효율성 제고를 위한 최적경로 연구)

  • Kim, Seung-Ki;Lee, Moon-Gul;Lee, Hyun-Soo
    • Korean Management Science Review
    • /
    • v.33 no.1
    • /
    • pp.89-99
    • /
    • 2016
  • A scheduled airlift is the most critical part of the air transportation operations in ROK Air Force. The military cargo-plane routing problem is a PDPLS (pickup and delivery problem in which load splits and node revisits are allowed). The cargo which is transported by a military cargo-plane is measured in pallet. The efficiency of pallet needs to be considered with respect to its volume and weight. There are some guidelines about orders of priorities and regulations in the military air transportation. However, there are no methodologies which can raise the efficiency of flight scheduling using Operations Research (OR) theories. This research proposes the effective computing methodology and the related heuristic algorithms that can maximize the effectiveness of the path routing model.