• Title/Summary/Keyword: Effective volume

Search Result 2,430, Processing Time 0.045 seconds

The Effects on the Pulmonary Function and Body Mass Index of 20's Men Obesity after Treadmill Exercise (트레드밀 훈련이 20대 남성 비만인의 폐기능 및 체질량지수에 미치는 영향)

  • Seo, Kyochul;Kim, Hyeonae
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.4 no.4
    • /
    • pp.13-19
    • /
    • 2016
  • PURPOSE : The purpose of this study was to determine whether tredmill exercise increases pulmonary function and decreases body mass index of the 20s obesity. METHOD : Thirty obesity in their 20s were randomly assigned to on experimental group (n=15) or control group (n=15). Over the course of four weeks, the experimental group participated in tredmill exercise for 30 minutes three times per week and the control group participated in auto-med exercise for 30 minutes three times per week. Subjects were assessed pre-test and post-test by measurement of pulmonary function (tidal volume, inspiration reserve volume, expiratory reserve volume, vital capacity) and body mass index. RESULT : Our findings show that the experimental group had significant difference in expiratory reserve volume and vital capacity and body mass index (p<.05). In the comparison of the two groups, the experimental group had higher pulmonary function and lower body mass index than the control group. CONCLUSION : In this study, the experimental group showed greater improvement in pulmonary function than the control group, which indicates that the tredmill exercise is effective at increasing the pulmonary function and body mass index 20s obesity.

Salivary secretion and salivary stress hormone level changes induced by tongue rotation exercise

  • Mizuhashi, Fumi;Koide, Kaoru
    • The Journal of Advanced Prosthodontics
    • /
    • v.12 no.4
    • /
    • pp.204-209
    • /
    • 2020
  • PURPOSE. Prevention of xerostomia and stress is important to prolong healthy life expectancy and improve the quality of life. We aimed to investigate the effects of tongue rotation exercise for increasing salivary secretions and stabilizing salivary stress hormone levels. MATERIALS AND METHODS. Twenty four participants without subjective oral dryness were enrolled. The exercises comprised tongue rotation exercise and empty chewing. The salivary stress hormone level was measured using a Salivary Amylase Monitor. Unstimulated whole saliva volume and salivary amylase activity were measured before tongue rotation exercise or empty chewing and subsequently 5, 10, and 15 minutes after these exercises. Differences in the rates of change of unstimulated whole saliva volume and salivary amylase activity were analyzed by repeated measure analysis of variance. RESULTS. Statistically significant differences among the rates of change were not observed after empty chewing for unstimulated whole saliva volume and salivary amylase activity at the four measurement times. However, the rate of change of unstimulated whole saliva volume and salivary amylase activity were statistically significantly different among the four time points: before the tongue rotation exercise and 5, 10, and 15 minutes post-exercise (P<.05 and P<.01, respectively). CONCLUSION. Tongue rotation is effective in increasing saliva secretion, reducing stress, improving oral function, and extending healthy life expectancy.

Evaluation of Humidity Control Ceramic Paint Using Gypsum Binder

  • Lee, Jong-Kyu;Kim, Tae-Yeon
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.1
    • /
    • pp.74-79
    • /
    • 2018
  • Active clay, bentonite and zeolite were used as porous materials for humidity controlling ceramic boards. The specific area and the pore volume of active clay were higher than those of bentonite and zeolite. It was effective to add white cement as well as a retarding agent to control the setting time of the ceramic paint. As the amount of added porous materials increases, the specific surface area and total pore volume of ceramic paint increase, but the average pore diameter decreases. The addition of porous materials having a high specific area and a large pore volume improves the moisture absorptive and desorptive performance of the ceramic paint. Therefore, in this experiment, the moisture absorptive and desorptive properties were best when active clay was added. Also, as the added amount of porous materials increases, the moisture absorptive and desorptive properties improve. In this experiment, when 70 mass% of active clay was added to ceramic paint, the hygroscopicity was highest at about $80g/m^2$.

Research on the Variable Rate Spraying System Based on Canopy Volume Measurement

  • Hu, Kaiqun;Feng, Xin
    • Journal of Information Processing Systems
    • /
    • v.15 no.5
    • /
    • pp.1131-1140
    • /
    • 2019
  • Characteristics of fruit tree canopies are important target information for adjusting the pesticide application rate in variable rate spraying in orchards. Therefore, the target detection of the canopy characteristics is very important. In this study, a canopy volume measurement method for peach trees was presented and a variable rate spraying system based on canopy volume measurement was developed using the ultrasonic sensing, one of the most effective target detection method. Ten ultrasonic sensors and two flow control units were mounted on the orchard air-assisted sprayer. The ultrasonic sensors were used to detect the canopy diameters and the flow controls were used to modify the flow rate of the nozzles in real time. Two treatments were established: a constant application rate of $300Lha^{-1}$ was set as the control treatment for the comparison with the variable rate application at a $0.095Lm^{-3}$ canopy. The tracer deposition at different parts of peach trees and the tracer losses to the ground (between rows and within rows) were analyzed in detail under constant rate and variable rate application. The results showed that there were no significant differences between two treatments in the liquid distribution and the capability to reach the inner parts of the crop canopies.

The Study of Normal Tissue Complication Probability(NTCP) for Radiation Pneumonitis by Effective Volume Method (유효체적 방법과 임상분석을 통한 방사선에 의한 정상 폐조직의 부작용 확률에 관한 연구)

  • Ahn Seung Do;Choi Eun Kyung;Yi Byong Yong;Chang Hyesook
    • Radiation Oncology Journal
    • /
    • v.15 no.3
    • /
    • pp.243-249
    • /
    • 1997
  • Purpose : In radiation therapy, NTCF is very importart indicator of selecting the optimal treatment plan. In our study, we tried to find out usefullness of NTCP in lung cancer by comparng the incidence of radiation pneumonitis with NTCP. Materials and Methods : From August 1993 to December 1994, thirty six patients with locally advanced non=small cell lung cancer were treated by concurrent chemoradiation therapy. Total dose of radiation therapy was 6480cGy (120cGy, bid) and chemotherapeutlc agents were mitomycin C. vinblastion, cisplatin (2 cycles, 4 weeks interval). We evaluated the development of raniation pneumonitis by CT scan, chest x-rar and clinical symptoms. We used grading system of South Western Oncology Group (SWOG) for radiation pneumanitis. Dose Volume Histograms (DVH) were analyzed for ipsilateral and whole lung, Non uniform DVH was translated to uniform DVH by effective volume method. With these data, we calculated NTCP for ipsilateral and whole lung. Finally we compared the clinical results to NTCP. Results : Eight of thrity six patients developed radiation pneumonitis. Of these 8 patients , 6 had grade I severity and 2 had grade II. The average NTCP value cf the patients who showed radiation pneumonitis was significantly higher than that uf the patients without pneumonitis $(66\%\;vs.\;26.4\%)$. But the results of pulmonary function test was not correlated with NTCP. Conclusion : NTCP of lung is very good indicator for selecting rival treatment planning in lung cancer. According to the results of NTCP, it may be possible to adjust target volume and optimize target dose. In the near future, we are going to anaiyze the effect of hyperfractionation and concurrent chemotherapy in addition to NTCP.

  • PDF

THE EVALUATION OF SELLA TURCICA ON THE SHAPE AND VOLUME IN CLASS III PATIENTS : The Possibility of Sella Turcica as Class III Growth Prediction Indicator (성인 III급 부정교합자의 SELLA TURCICA의 형태 및 크기에 관한 연구 : SELLA TURCICA부피의 III급 부정교합 예측 지표로서의 가능성)

  • Yang, Won-Sik;Ha, Tai-Heon
    • The korean journal of orthodontics
    • /
    • v.28 no.2 s.67
    • /
    • pp.203-217
    • /
    • 1998
  • Sella turcica contains pituitary gland that has influence on craniofacial growth. So, if the volume of sella turcica correlate to the function of Pituitary gland, we can assume that the volume of sella turcica in skeletal Class III patients has some difference to that of normal occlusion group. The purpose of this study was to evaluate the difference of shape and volume of sella turcica between normal occlusion group and Class III patients. The shape of sella turcica was Classified by Inaba method and the volume of sella turcica was measured in lateral and P-A cephalograms by Di Chiro method. To find out the possibility of the volume of sella turcica as diagnostic aid to predict Class III growth pattern, the correlation coefficients between the volume of sella and cephalometric variables were calculated. The results were as follows. 1. The volume of sella turcica in Class III patients is larger than that of normal occlusion groups 2. The volume of sella turcica in female was larger than that of male in Class III patients 3. The volume of sella turcica has close correlation with APDI, ANB, SNA, SNB, ODI, gonial angle, post. cranial base length 4. Sella Index (volume of sella / ant. cranial base length) can be a more accurate indicator that represent Class III growth pattern than volume of sella itself. 5. The morphologic pattern of sella turcica had no significant difference between two groups.

  • PDF

Effective flexural rigidities for RC beams and columns with steel fiber

  • Bengar, Habib Akbarzadeh;Kiadehi, Mohammad Asadi;Shayanfar, Javad;Nazari, Maryam
    • Steel and Composite Structures
    • /
    • v.34 no.3
    • /
    • pp.453-465
    • /
    • 2020
  • Influences of different variables that affect the effective flexural rigidity of reinforced concrete (RC) members are not considered in the most seismic codes. Furthermore, in the last decades, the application of steel fibers in concrete matrix designs has been increased, requiring development of an accurate analytical procedure to calculate the effective flexural rigidity of steel fiber reinforced concrete (SFRC) members. In this paper, first, a nonlinear analytical procedure is proposed to calculate the SFRC members' effective flexural rigidity. The proposed model's accuracy is confirmed by comparing the results obtained from nonlinear analysis with those recorded from the experimental testing. Then a parametric study is conducted to investigate the effects of different parameters such as varying axial load and steel fiber are then investigated through moment-curvature analysis of various SFRC (normal-strength concrete) sections. The obtained results show that increasing the steel fiber volume percentage increases the effective flexural rigidity. Also it's been indicated that the varying axial load affects the effective flexural rigidity. Lastly, proper equations are developed to estimate the effective flexural rigidity of SFRC members.

Micromechanical Finite Element Analysis and Effective Material Property Evaluation of Composite Materials (미시역학을 고려한 복합재료의 유한요소해석 및 유효 물성치 평가)

  • 이승표;정재연;하성규
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2003.04a
    • /
    • pp.220-223
    • /
    • 2003
  • The methodology of micromechanical finite element method (MFEM) is proposed to calculate the micromechanical strains on fiber and matrix under mechanical and thermal loadings. For micromechanical analysis, composite structure is idealized the square and hexagonal unit cells. Boundary conditions are determined to calculate the effective material properties of composites and the strain magnification matrix. And they are verified by comparing with the results from multi cells, and the strain distributions of the unit cells are in accordance with those of the multi cells. Finally, the effective material properties of composite structure are obtained with respect to its fiber volume fraction and compared with results from rules-of-mixture.

  • PDF

Effective Material Properties of Composite Materials by Using a Numerical Homogenization Approach (균질화 접근법을 통한 복합재의 유효물성치 계산)

  • Anto, Anik Das;Cho, Hee Keun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.12
    • /
    • pp.28-37
    • /
    • 2019
  • Due to their flexible tailoring qualities, composites have become fascinating materials for structural engineers. While the research area of fiber-reinforced composite materials was previously limited to synthetic materials, natural fibers have recently become the primary research focus as the best alternative to artificial fibers. The natural fibers are eco-friendly and relatively cheaper than synthetic fibers. The main concern of current research into natural fiber-reinforced composites is the prediction and enhancement of the effective material properties. In the present work, finite element analysis is used with a numerical homogenization approach to determine the effective material properties of jute fiber-reinforced epoxy composites with various volume fractions of fiber. The finite element analysis results for the jute fiber-reinforced epoxy composite are then compared with several well-known analytical models.

Effective Gas Identification Model based on Fuzzy Logic and Hybrid Genetic Algorithms

  • Bang, Yonug-Keun;Byun, Hyung-Gi;Lee, Chul-Heui
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.329-338
    • /
    • 2012
  • This paper presents an effective design method for a gas identification system. The design method adopted the sequential combination between the hybrid genetic algorithms and the TSK fuzzy logic system. First, the sensor grouping method by hybrid genetic algorithms led the effective dimensional reduction as well as effective pattern analysis from a large volume of pattern dimensions. Second, the fuzzy identification sub-models allowed handling the uncertainty of the sensor data extensively. By these advantages, the proposed identification model demonstrated high accuracy rates for identifying the five different types of gases; it was confirmed throughout the experimental trials.