• Title/Summary/Keyword: Effective stress analysis

Search Result 1,464, Processing Time 0.027 seconds

FINITE ELEMENT ANALYSIS OF STRESS TRANSMITTED TO THE PULPECTOMIZED PRIMARY CENTRAL INCISOR RECONSTRUCTED BY COMPOSITE RESIN CROWN (상악 유중절치의 치수치료후 치관수복에 대한 유한요소법적 분석)

  • Maeng, Myung-Ho;Kim, Yong-Kee;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.25 no.4
    • /
    • pp.717-730
    • /
    • 1998
  • The Finite Element Analysis has been used for stress analysis of prosthesis, orthodontic or orthopedic appliances and filling materials. The primary purpose of the present studying was to evaluate the effectiveness of needle post in promoting the retention and integrity of composite crown restored on the pulpotomized primary central incisor. Three finite element models-natural tooth (Sample I), composite crown with (Sample II) and without (Sample III) needle post-were constructed and the stress distribution within each model were analyzed and compared one another. The results can be summarized as follows: 1. In sample I, the stress was shown to have distributed uniformly throughout the whole tooth even to the alveolar bone. 2. In sample II, the transmission of stress from the crown to the root area was shown to be very poor and irregular. 3. In sample III, the needle post was proved to be very effective in distributing the stress well to the aveolar bone which might help in maintaining the stability of crown restoration.

  • PDF

Fatigue Assessment of Butt Welded Specimen According to the Existence of the Backplate (Backplate의 유무에 따른 맞대기 용접 시험편의 피로강도 평가)

  • Han, Ju-Ho;Kim, Seong-Min;Lee, Woo-Il;Kang, Sung-Won;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.27 no.1
    • /
    • pp.90-94
    • /
    • 2009
  • In this study, a series of fatigue test was performed to evaluate the fatigue strength of butt welded specimens. Effective notch stress through finite element analysis was conducted to analyze the fatigue results. As a results, no significant decrease in fatigue strength was observed when backplates were present. The S-N curve that based on effective notch stress appeared a similar fatigue lift to FAT 225 curve without reference to existence of backplates.

Nonlinear Stress Analysis of Pressure Vessel for Various Dome Shapes and Thicknesses (압력 용기 도옴의 형상 및 두께 변화에 따른 비선형 응력해석)

  • 이영신;조원만;구송회
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.10
    • /
    • pp.2634-2645
    • /
    • 1993
  • Dome structures of pressure vessels subjected to internal pressure are usually analyzed by linear elastic theory assuming small deformation. Geometric and material nonlinear behaviors appear in actual dome structures because of large deformation and loads exceeding yield strength. In this paper, linear and nonlinear analyses were performed for various hemispherical and torispherical domes to check the effects of geometric and material nonliearity on the stress and displacement by the finite element method. The effect of the geometric nonlinearity decreased the stress levels a lot for very thin general torispherical domes, which enables more realistic and effective design. The material nonlinear effects are negligible for hemispherical and optimum torispherical domes, and those are large for most of the general torispherical domes.

Finite Element Analysis of the Tire Contact Problem (타이어 접지문제의 유한요소 응력해석)

  • Han, Y.H.;Kim, Y.H.;Huh, H.;Kwak, Y.K.
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.820-830
    • /
    • 1989
  • The tire inflation and contact problem has been solved by a finite element method. The finite element formulation is derived from the equilibrium equations by the principle of virtual work in the form of an updated Lagrangian formulation for incremental analysis. Then, a contact formulation is added to the finite element formulation to calculate stress state of tire in contact with flat rigid road under the load due to the self-weight of a vehicle. In the finite element analysis, equations of effective material properties are introduced to analyze a plane strain model of the shell-like tire by considering the bending effect of reinforced steel cords. The proposed equations of effective material properties produced stress concentration around the edge of belt layers, which does not appear when other well-known equations of material properties are adopted. The result from the above algorithm demonstrates the validity of the formulation and the proposed equations for the effective elastic constants. The result fully interprets the cause of separation between belt layers by showing the stress concentration.

Study on the mix proprotion and the thermal crack of Ultra High Strength Concrete (초고강도 콘크리트의 배합 및 온도균열에 대한 연구)

  • Moon, Han-Young;Kim, Byoung-Kwon;Son, Young-Hyun;Kang, Hoon;Kim, Jeong-Sik
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.265-268
    • /
    • 1999
  • In this study, we manufactured the ultra-high strength concrete using mineral admixture which is easily workable. From the test results of compressive strength, It is concluded that the proper replacement ratio of silica fume should not exceed to 10% and the replacement of slag is more effective that the replacement of fly ash to gain very high compressive strength. Thermal stress analysis is conducted to find the way of controlling the thermal crack of ultra-high strength concrete. As results of thermal stress analysis, it was found that reducing placing temperature of concrete(pre-cooling) is effective to reduce thermal crack and placing concrete in high air temperature is more effective than placing concrete in low air temperature.

  • PDF

THREE-DIMENTIONAL FINITE ELEMENT ANALYSIS OF STRESS DISTRIBUTION FOR DIFFERENT IMPLANT THREAD SLOPE (임플랜트 나사선 경사각이 치조골 응력 분포에 미치는 영향)

  • Seo, Young-Hun;Vang, Mong-Sook;Yang, Hong-So;Park, Sang-Won;Park, Ha-Ok;Lim, Hyun-Pil
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.4
    • /
    • pp.482-491
    • /
    • 2007
  • Statement of problem: The screws of dental implant, having various thread types, can be categorized into different classes by their geometrical form, and each type transmits dissimilar amount and form of stress to alveolar bone. Purpose: The purpose of this study was to find an inclination angle of the screw thread that is favorable in distributing the stresses to alveolar bone. Material and methods: In this study, We used three dimensional finite element analysis with modeling having three types of thread inclination angles and fixed pitch-0.8 mm (single thread type with $3.8^{\circ}$ inclination, double thread type with $7.7^{\circ}$ inclination, triple thread type with $11.5^{\circ}$ inclination). Results: The results obtained from this study were as follows; 1. When the number of thread increased, the amount of Von-Mises stress was reduced since the generated stress was effectively distributed. 2. Since the maximum principal stress affects on the alveolar bone can influence deeply on the longevity of the implants when comparing the magnitude of the maximum principal stress double thread had least amount of stress. This shows that the double thread screw gave best result. Conclusion: In conclusion, double, and triple thread screws were found to be more effective on distribution of the stress than the single thread screws. But, increasing in the thread inclination angle such as triple thread screw relate on the magnitude of the maximum principal stress affecting on the alveolar bone can become problematic. Thus, effective combination of thread number and thread inclination angle can help prolonging the longevity of implant.

Effects of Perceived Stress on State Hope in Patients with Depression : Differences of Cognitive Emotional Regulation (우울장애에서 지각된 스트레스 정도가 희망감에 미치는 영향 : 인지적 정서조절 전략 차이)

  • Lee, Na-Bin;Min, Jung-Ah;Chae, Jeong-Ho
    • Mood & Emotion
    • /
    • v.9 no.2
    • /
    • pp.78-86
    • /
    • 2011
  • Objectives : The aim of this study was to investigate relationship between perceived stress level, cognitive emotion regulation (CER) strategy and hope in group with high depressive symptom and higher-level perceived stress (H-H) and group with high depressive symptom and lower-level perceived stress (H-L) in patients with depression. Method : A total of 85 patients (over score of 16 by Beck depression Inventory; BDI) were surveyed with Cognitive emotion regulation questionnaire (CERQ), Perceived stress scale (PSS), and The state hope scale (SHS). Mean scores of CERQ and SHS were compared between relatively higher perceived stress and lower perceived stress groups. Correlation analysis and multiple linear regression analyses were performed to identify the effect of BDI, PSS and CER strategy on SHS in two groups. Results : In ANOVA, the level of hope and maladaptive CERQ score proved to be significantly lower among the H-H group than among the H-L group, while adaptive CERQ scores were not. In Regression analysis, the effective CER strategy in SHS were 'Refocus on planning' in H-H group, while it was 'Acceptance' CER strategy in H-L group. The final regression model explained 36% of the variance of SHS in H-H group and explained 21% of SHS in H-L group. Conclusion : These findings suggest that 'Refocus on planning' and 'Acceptance' cognitive emotion strategy are helpful in promotion of state hope on depression. Especially, 'Refocus on planning' strategy is more effective in high depressive symptom and high-perceived stress level, while 'Acceptance' strategy help to promote hope in high depressive symptom and low-perceived stress level in patients with depression.

A Study on Stress Analysis of Spur Gear Using FEM (FEM을 이용한 스퍼기어 응력 해석에 관한 연구)

  • Lee, Kyung-Won;Ban, Jae-Sam;Kim, Gyu-Ha;Cho, Kyu-Zong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.2
    • /
    • pp.171-176
    • /
    • 2002
  • This paper is the study on stress analysis of spur gear using a finite element method. Gear drives constitute very important mechanisms in transmitting mechanical power processes compromising several cost effective and engineering advantages. The load transmission occurred by the contacting surfaces arises variable elastic deformations which are being evaluated through finite element analysis. The automatic gear design program is developed to model gear shape precisely. This gear design system developed was used by pre-processor of FEM packages. The distribution of stresses at contacting surfaces was examined when a pair of gear contact.

Stress Analysis of Cold-Formed Steel Beams Considering Local Buckling Effects (국부좌굴을 고려한 냉간성형 ㄷ 형강보의 응력해석)

  • Jeon, Jae Man;Hyun, Ja Young;Lee, Jae Hong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.1 s.68
    • /
    • pp.51-60
    • /
    • 2004
  • The stress analysis of cold-formed channel section steel beams under transverse load was conducted. The local buckling effect was included in the analysis using effective area concept. The proposed analytical model is capable of predicting accurate normal stress in the beam due to various behaviors including biaxial bending and warping. It was found to be appropriate for predicting stresses as well as deflection in the beam. A finite element model was developed to solve the analytical model.

Evaluation of Fatigue Endurance for a Rocker Arm of Diesel engine (디젤 엔진 로커 암의 피로 내구성 평가)

  • Kim, Ho-Kyung;Yang, Kyoung-Tak;Kim, Hyun-Jun
    • Journal of the Korean Society of Safety
    • /
    • v.22 no.3 s.81
    • /
    • pp.1-6
    • /
    • 2007
  • In order to evaluate fatigue endurance for the rocker arm of a diesel engine, stress measurements were performed using the strain gages attached near the neck, where is one of the most critical region in the rocker arm, in variation of the engine speed. The fatigue life experiments were carried out on miniature specimens from the rocker arms. For evaluating the fatigue endurance of the rocker arm, the S-N data were compared with the stress analysis results through FEM analysis of the rocker arm. The effective stress of the neck region was determined 17.7MPa through FEM analysis of the rocker arm. Conclusively, on the basis of fatigue limit, the rocker arm has a safety factor of 2.8 or 3.4 from the stress measurement or FEM results, respectively.