• Title/Summary/Keyword: Effective stiffness

검색결과 1,073건 처리시간 0.026초

Fused Deposition Modeling of Iron-alloy using Carrier Composition

  • Harshada R. Chothe;Jin Hwan Lim;Jung Gi Kim;Taekyung Lee;Taehyun Nam;Jeong Seok Oh
    • Elastomers and Composites
    • /
    • 제58권1호
    • /
    • pp.44-56
    • /
    • 2023
  • Additive manufacturing (AM) or three-dimensional (3D) printing of metals has been drawing significant attention due to its reliability, usefulness, and low cost with rapid prototyping. Among the various AM technologies, fused deposition modeling (FDM) or fused filament fabrication is receiving much interest because of its simple manufacturing processing, low material waste, and cost-effective equipment. FDM technology uses metal-filled polymer filaments for 3D printing, followed by debinding and sintering to fabricate complex metal parts. An efficient binder is essential for producing polymer filaments and the thermal post-processing of printed objects. This study involved an in-depth investigation of and a fabrication route for a novel multi-component binder system with steel alloy powder (45 vol.%) ranging from filament fabrication and 3D printing to debinding and sintering. The binder system consisted of polyvinyl pyrrolidone (PVP) as a binder and thermoplastic polyurethane (TPU) and polylactic acid (PLA) as a carrier. The PVP binder held the metal components tightly by maintaining their stoichiometry, and the TPU and PLA in the ratio of 9:1 provided flexibility, stiffness, and strength to the filament for 3D printing. The efficacy of the binder system was examined by fabricating 3D-printed cubic structures. The results revealed that the thermal debinding and sintering processes effectively removed the binder/carrier from the cubic structures, resulting in isotropic shrinkage of approximately 15.8% in all directions. The scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDX) patterns displayed the microstructure behavior, phase transition, and elemental composition of the 3D cubic structure.

재액상화에 관한 원심모형실험과 수치해석 (Centrifuge Test and Its Numerical Modeling for Reliquefaction)

  • 박성식
    • 한국지반공학회논문집
    • /
    • 제22권12호
    • /
    • pp.89-98
    • /
    • 2006
  • 본 논문에서는 지진이 발생한 지역에서 다시 지진이 발생할 경우에 포화된 사질토 지반의 동적거동에 관한 연구를 수행하였다. 반복 직접단순전단시험을 실시하여 느슨한 모래지반에서 간극수압발생량과 재액상화발생여부의 상관관계를 분석하였다. 최초의 전단하중으로 인하여 지반이 원래 가지고 있던 유효수직응력의 약 90%까지 간극수압이 발생하였을 경우 시간 경과에 따라 과잉간극수압이 전부 소산된 이후 다시 전단하중을 가하였을 때 지반의 액상화에 대한 저항력은 증가하였다. 하지만 최초 진동으로 지반이 완전히 액상화되었을 경우에는 다음에 전달되는 전단하중에는 이전보다도 지반이 더욱 조밀해짐에도 불구하고 액상화 저항력은 증가하지 않았다. 이와 같은 실내시험결과를 진동 중에 발생하는 간극수압 변화와 흙의 강성저하를 고려할 수 있는 유효응력모델인 UBCSAND모델에 적용하였으며, 최초 전단하중에서 발생하는 간극수압비에 따라 구성모델의 액상화 저항력을 결정하였다. 이 구성모델을 이용하여 재액상화현상을 연구한 원심모형실험의 결과를 예측하였으며, 계측치와 서로 비교하였다. 국내에서도 일본과 가까운 남부지역에서는 약한 지진이지만 자주 발생하고 있는 시점에서 이와 같은 유효응력모델을 이용한 재액상화 현상에 관한 연구가 절실히 요구되어진다.

Study of the longitudinal reinforcement in reinforced concrete-filled steel tube short column subjected to axial loading

  • Alifujiang Xiamuxi;Caijian Liu;Alipujiang Jierula
    • Steel and Composite Structures
    • /
    • 제47권6호
    • /
    • pp.709-728
    • /
    • 2023
  • Experimental and analytical studies were conducted to clarify the influencing mechanisms of the longitudinal reinforcement on performance of axially loaded Reinforced Concrete-Filled Steel Tube (R-CFST) short columns. The longitudinal reinforcement ratio was set as parameter, and 10 R-CFST specimens with five different ratios and three Concrete-Filled Steel Tube (CFST) specimens for comparison were prepared and tested. Based on the test results, the failure modes, load transfer responses, peak load, stiffness, yield to strength ratio, ductility, fracture toughness, composite efficiency and stress state of steel tube were theoretically analyzed. To further examine, analytical investigations were then performed, material model for concrete core was proposed and verified against the test, and thereafter 36 model specimens with four different wall-thickness of steel tube, coupling with nine reinforcement ratios, were simulated. Finally, considering the experimental and analytical results, the prediction equations for ultimate load bearing capacity of R-CFSTs were modified from the equations of CFSTs given in codes, and a new equation which embeds the effect of reinforcement was proposed, and equations were validated against experimental data. The results indicate that longitudinal reinforcement significantly impacts the behavior of R-CFST as steel tube does; the proposed analytical model is effective and reasonable; proper ratios of longitudinal reinforcement enable the R-CFSTs obtain better balance between the performance and the construction cost, and the range for the proper ratios is recommended between 1.0% and 3.0%, regardless of wall-thickness of steel tube; the proposed equation is recommended for more accurate and stable prediction of the strength of R-CFSTs.

다경간 연속 교량 구조물의 지진응답 평가를 위한 개선된 모드별 비탄성 정적 해석법에 관한 연구 (Improved Modal Pushover Analysis of Multi-span Continuous Bridge Structures)

  • 곽효경;홍성진;김영상
    • 대한토목학회논문집
    • /
    • 제26권3A호
    • /
    • pp.497-512
    • /
    • 2006
  • 본 논문에서는 구조물의 모든 진동모드를 고려하는 모드별 비탄성 정적 해석법을 바탕으로 하여 다경간 연속 교량 구조물의 내진 역량을 평가할 수 있는 간단하고 효율적인 해석 방법을 제시하였다. 동일한 항복 후 기울기비와 근사 탄성변형 형상의 개념을 새롭게 도입하여 비탄성 구조계에 모드별 중첩이론을 직접 적용함으로써 발생하던 기존의 간섭 효과를 소거시켰다. 나아가 앞서 언급한 두 가지 개념과 적절한 분포하중을 정적 해석에 사용함으로써 더욱 간편한 해석 과정을 통하여 모든 종류의 교량 구조물에 대한 동적 거동을 예측하는 것이 가능해 졌다. 마지막으로 제안한 방법의 효용성과 적용성을 확인하기 위하여 4가지의 교량 모델에 대한 비선형 시간이력 해석과 간편화된 비선형 정적 해석의 변위예측 결과를 비교 분석하였다.

Seismic performance of RC columns retrofitted using high-strength steel strips under high axial compression ratios

  • Yang, Yong;Hao, Ning;Xue, Yicong;Feng, Shiqiang;Yu, Yunlong;Zhang, Shuchen
    • Structural Engineering and Mechanics
    • /
    • 제84권3호
    • /
    • pp.345-360
    • /
    • 2022
  • In this paper, the impact on seismic performance of an economical effective technique for retrofitting reinforced concrete (RC) columns using high-strength steel strips under high axial compression ratios was presented. The experimental program included a series of cyclic loading tests on one nonretrofitted control specimen and three retrofitted specimens. The effects of the axial compression ratio and spacing of the steel strips on the cyclic behavior of the specimens were studied. Based on the test results, the failure modes, hysteretic characteristics, strength and stiffness degradation, displacement ductility, and energy dissipation capacity of the specimens were analyzed in-depth. The analysis showed that the transverse confinement provided by the high-strength steel strips could effectively delay and restrain diagonal crack development and improve the failure mode, which was flexural-shear failure controlled by flexural failure with better ductility. The specimens retrofitted using high-strength steel strips showed more satisfactory seismic performance than the control specimen. The seismic performance and deformation capacity of the retrofitted RC columns increased with decreasing axial compression ratio and steel strip spacing. Based on the test results, a hysteretic model for RC columns that considers the transverse confinement of high-strength steel strips was then established. The hysteretic model showed good agreement with the experimental results, which verified the effectiveness of the proposed hysteretic model. Therefore, the aforementioned analysis can be used for the design of retrofitted RC columns.

Experimental and analytical study on RC beam reinforced with SFCB of different fiber volume ratios under flexural loading

  • Lin, Jia-Xiang;Cai, Yong-Jian;Yang, Ze-Ming;Xiao, Shu-Hua;Chen, Zhan-Biao;Li, Li-Juan;Guo, Yong-Chang;Wei, Fei-Fei
    • Steel and Composite Structures
    • /
    • 제45권1호
    • /
    • pp.133-145
    • /
    • 2022
  • Steel fiber composite bar (SFCB) is a novel type of reinforcement, which has good ductility and durability performance. Due to the unique pseudo strain hardening tensile behavior of SFCB, different flexural behavior is expected of SFCB reinforced concrete (SFCB-RC) beams from traditional steel bar reinforced concrete (S-RC) beams and FRP bar reinforced concrete (F-RC) beams. To investigate the flexural behavior of SFCB-RC beam, four points bending tests were carried out and different flexural behaviors between S/F/SFCB-RC beams were discussed. An flexural analytical model of SFCB-RC beams is proposed and proved by the current and existing experimental results. Based on the proposed model, the influence of the fiber volume ratio R of the SFCB on the flexural behavior of SFCB-RC beams is discussed. The results show that the proposed model is effective for all S/F/SFCB-RC flexural members. Fiber volume ratio R is a key parameter affecting the flexural behavior of SFCB-RC. By controlling the fiber volume ratio of SFCB reinforcements, the flexural behavior of the SFCB-RC flexural members such as bearing capacity, bending stiffness, ductility and repairability of SFCB-RC structures can be designed.

일회성 등속성 운동이 심장 자율신경 조절 및 근속성에 미치는 영향 (Effect of Transient Isokinetic Exercise on Cardiac Autonomic Nervous Modulation and Muscle Properties)

  • 박수경;박시은
    • 대한통합의학회지
    • /
    • 제11권4호
    • /
    • pp.27-39
    • /
    • 2023
  • Purpose : The aim of this study was to identify the influence of transient isokinetic exercise on cardiac autonomic modulation and muscle properties in healthy male subjects. Methods : Twenty-eight healthy males underwent isokinetic exercise of both knee joints using a Biodex systems 3 isokinetic dynamometer with an angular velocity of 60 °/sec. The changes in activity of the autonomic nervous system, as determined by heart rate variability (HRV), and in muscle properties were evaluated at three times: pre-exercise, immediately post-exercise, and 10 min post-exercise. Results : The time domain analysis of HRV revealed significant changes in the beat count and mean and minimal heart rate (HR) measured at pre-exercise, immediately post-exercise, and 10 min post-exercise (p<.001). The beat count and mean HR were markedly increased immediately post-exercise compared to pre-exercise, but then significantly decreased at 10 min post-exercise (p<.001). All parameters of the frequency domain were significantly altered by isokinetic exercise (p<.01). The low frequency/high frequency (LF/HF) ratio, as an index for the sympathovagal balance, was elevated by exercise and remained at a similarly high level at 10 min post-exercise (p<.01). The muscle properties of rectus femoris were changed as follows: Muscle tone and stiffness were significantly increased between pre-exercise and immediately post-exercise (p<.001), and between pre-exercise and at 10 min post-exercise (p<.001). Whereas, the elasticity showed no significant change. Conclusion : These results demonstrated that transient isokinetic exercise could induce changes in cardiac autonomic control and muscle properties. In particular, up-regulation of LF/HF ratio after exercise signifies thus enhanced sympathetic modulation by isokinetic exercise. Therefore, it is needed to understand the cardiovascular risks that may arise during isokinetic exercise for providing the basic evidence to establish appropriate isokinetic exercise protocols as effective rehabilitation exercises.

지진 시 지반개량에 따른 잔교식 안벽의 동적 거동 (Dynamic Behavior of Pier-Type Quay Walls Due to Ground Improvement During Earthquakes)

  • 윤현수;윤성규;강기천
    • 한국지반신소재학회논문집
    • /
    • 제23권2호
    • /
    • pp.29-42
    • /
    • 2024
  • 2017년 포항지진으로 인해 액상화 현상에 의한 안벽구조물에 피해가 발생하였다. 액상화는 지진 시 과잉간극수압 증가로 인해 유효응력이 소실되어 발생하게 된다. 이에 따른 잔교식 안벽의 피해 발생 부분을 규명하며 액상화로 인한 피해를 분석하였다. 또한 개량지반의 경우 연암층과 강성차이로 인해 하부 Sand 층의 액상화 현상으로 인해 피해가 발생하여, 비액상화 지반으로 가정하고 추가적인 수치해석을 수행하였다. 과잉간극수압비의 증가에 영향을 주는 요인으로는 지반의 상대밀도 및 입력 지진가속도의 크기 등 여러 가지 원인이 있다. 따라서 본 연구는 입력가속도의 크기를 증가시켜 Case 1~3에 대해 수치해석을 수행하였고, 개량지반의 경우 하부 Sand층의 액상화 현상으로 인한 피해가 발생하여 비액상화지반으로 가정하여 분석을 수행하였다. 결과적으로, 개량지반은 하부 액상화지반이 있을 경우 추가적인 보강이 필요하며, 잔교식 안벽 말뚝의 수평변위가 약 2배 감소하는 현상이 나타났다.

고유수용성 신경근 촉진 스트레칭 기법과 탄성 스트레칭 기법이 엉덩관절 유연성 및 근 긴장도에 미치는 영향 (The Effects of Proprioceptive Neuromuscular Facilitation Stretching and Ballistic Stretching on Hip Joint Flexibility and Muscle Tone)

  • 강태우;박서윤
    • PNF and Movement
    • /
    • 제22권1호
    • /
    • pp.71-80
    • /
    • 2024
  • Purpose: The purpose of this study is to compare the effects of proprioceptive neuromuscular facilitation (PNF) stretching, based on ballistic stretching and the contract-relax technique, on hip joint flexibility and muscle tone in adults with shortened rectus femoris muscles. Methods: The study involved 40 adults with shortened rectus femoris muscles, identified using the modified Thomas test. Participants were randomly divided into two groups: PNF stretching, employing the contract-relax technique, and ballistic stretching. Measurements included muscle tension, hip joint range of motion, and muscle characteristics. The rectus femoris muscle shortening effect was confirmed by the modified Thomas test, while the flexibility effect was assessed through hip joint motion range. The muscle tension effect was determined using Myoton-PRO. Results: Both stretching methods resulted in significant improvements in modified Thomas test angles and frequency, with the PNF stretching group showing notably greater changes. However, neither stretching method significantly affected decrement or stiffness measurements. These findings suggest that PNF stretching may be more effective for certain outcomes compared to ballistic stretching. Conclusion: In summary, both stretching methods positively influenced flexibility and muscle tension, with PNF stretching showing a greater impact. These findings highlight the importance of selecting the appropriate stretching technique for achieving functional improvements in muscles, which could serve as valuable indicators for preventing and treating muscle injuries in both sports and daily activities.

Impact of Pulmonary Arterial Elastance on Right Ventricular Mechanics and Exercise Capacity in Repaired Tetralogy of Fallot

  • Soo-Jin Kim;Mei Hua Li;Chung Il Noh;Seong-Ho Kim;Chang-Ha Lee;Ja-Kyoung Yoon
    • Korean Circulation Journal
    • /
    • 제53권6호
    • /
    • pp.406-417
    • /
    • 2023
  • Background and Objectives: Pathophysiological changes of right ventricle (RV) after repair of tetralogy of Fallot (TOF) are coupled with a highly compliant low-pressure pulmonary artery (PA) system. This study aimed to determine whether pulmonary vascular function was associated with RV parameters and exercise capacity, and its impact on RV remodeling after pulmonary valve replacement. Methods: In a total of 48 patients over 18 years of age with repaired TOF, pulmonary arterial elastance (Ea), RV volume data, and RV-PA coupling ratio were calculated and analyzed in relation to exercise capacity. Results: Patients with a low Ea showed a more severe pulmonary regurgitation volume index, greater RV end-diastolic volume index, and greater effective RV stroke volume (p=0.039, p=0.013, and p=0.011, respectively). Patients with a high Ea had lower exercise capacity than those with a low Ea (peak oxygen consumption [peak VO2] rate: 25.8±7.7 vs. 34.3±5.5 mL/kg/min, respectively, p=0.003), while peak VO2 was inversely correlated with Ea and mean PA pressure (p=0.004 and p=0.004, respectively). In the univariate analysis, a higher preoperative RV end-diastolic volume index and RV end-systolic volume index, left ventricular end-systolic volume index, and higher RV-PA coupling ratio were risk factors for suboptimal outcomes. Preoperative RV volume and RV-PA coupling ratio reflecting the adaptive PA system response are important factors in optimal postoperative results. Conclusions: We found that PA vascular dysfunction, presenting as elevated Ea in TOF, may contribute to exercise intolerance. However, Ea was inversely correlated with pulmonary regurgitation (PR) severity, which may prevent PR, RV dilatation, and left ventricular dilatation in the absence of significant pulmonary stenosis.