• Title/Summary/Keyword: Effective refractive index

Search Result 113, Processing Time 0.025 seconds

Analysis and Measurement of Effective Refractive Indices with Ion-exchanged Slab Waveguide (이온교환 평판도파로의 실효굴절율 측정 및 해석)

  • 천석표;박정일;박태성;정홍배
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.73-76
    • /
    • 1995
  • In this study, the slab waveguide was fabricated using potassium-nitride(KNO$_3$) or silver-nitride (AgNO$_3$) molten sources by ion-exchange process. The effective refractive indices of waveguide were measured by Prism-Coupling method. and The characteristics of waveguide(mode dispersion, effective diffusion depth. surface refractive index, diffusion coefficient, and refractive index profile etc,) were investigated by WKB method, In the case of potassium ion-exchange, the computer calculation showed that the refractive index profile of waveguide followed Gaussian function, the surface refractive index increased with ion-exchange time and the effective diffusion depth increased a little as ion-exchange time increased, while the surface refractive index of silver ion-exchanged waveguide decreased with ion-exchange time because of the ion depletion on the surface of waveguide, and the effective diffusion depth seriously with ion-exchange tim. Double ion-exchanged waveguide was fabricated by performing silver ion-exchange after potassium ion-exchange. Double ion-exchanged waveguide had a tight mode binding force since the surface refractive index was larger than single step ion-exchanged waveguide.

  • PDF

Measurement of Effective Refractive Index of Nematic Liquid Crystal in Fabry-Perot Etalon

  • Ko, Myeong Ock;Kim, Sung-Jo;Kim, Jong-Hyun;Lee, Bong Wan;Jeon, Min Yong
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.4
    • /
    • pp.346-350
    • /
    • 2015
  • We report a measurement of the effective refractive index of a nematic liquid crystal (NLC) inside a Fabry-Perot (FP) etalon according to the applied electric fields. The effective refractive index of the NLC depends on the intensity of the applied electric field. A wavelength-swept laser with a polygon-scanner-based wavelength filter is used as a wide-band optical source to measure the effective refractive index of the NLC. The bandwidth of the optical source is greater than 90 nm around 1300 nm. The fabricated NLC FP etalon consists of glass substrates, gold layers as the electrodes with highly reflective surfaces, polyimide layers as the planar alignment layers, and an LC layer. Furthermore, we measured the Freedericksz transition voltages for three types of NLC FP etalons having thicknesses of $30.6{\mu}m$, $55.4{\mu}m$, and $108.8{\mu}m$. The Freedericksz transition voltages in the three cases are nearly equal. The measured effective refractive indices in the three cases decreased from 1.67 to 1.51 as the applied electric field intensity was increased. Beyond the threshold electric field, the effective refractive indices quickly decreased and eventually saturated at a value of 1.51 for all cases.

Effective Refractive Index of Dye-Sensitized Solar Cell Using Transmittance and Reflectance Measurements (투과 및 반사율 측정을 이용한 염료감응태양전지의 유효 굴절률 모델링)

  • Kim, Hyeong Seok;Lee, Joocheol;Shin, Myunghun
    • Current Photovoltaic Research
    • /
    • v.3 no.3
    • /
    • pp.91-96
    • /
    • 2015
  • Optical modeling and characterization of transparent dye-sensitized solar cells (DSC) are presented to design and estimate DSC devices numerically. In order to model the inhomogeneous active layer of DSC, the porous structure of titanium oxide ($TiO_2$) and dye mixture, we prepared films consisting of layer by layer of the DSC's basic materials sequentially, and characterized the optical parameters of the films with the effective refractive index, which was extracted from the transmittance and reflectance measurements in ultra violet to near infra-red range. By using the effective refractive index, we made the optical model for DSC, and demonstrated that the optical model based on effective refractive index can be used to design and evaluate the performance of transparent-type DSC modules.

Measurement of Effective Refractive Index of Anodic Aluminum Oxide Using a Prism Coupler

  • Gong, Su-Hyun;Cho, Y.H.;Stolz, Arnaud;Gokarna, Anisha;Dogheche, Elhadj;Ryu, Sang-Wan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.195-195
    • /
    • 2010
  • In recent years, Anodic aluminum oxide(AAO) has become popular and attractive materials. It can be easily fabricated and self-organized pore structures. It has been widely used as a biosensor membrane, photonic crystal for optical circuit and template for nanotube growth etc. In previous papers, the theory was developed that AAO shows anisotropic optical properties, since it has anisotropic structure with numerous cylindrical pores. It gives rise to the anisotropy of the refractive index called as birefringence. It can be used as conventional polarizing elements with high efficiency and low cost. Therefore, we would like to compare the theory and experimental results in this study. One method which can measure effective refractive index of thin film is the prism coupling technique. It can give accurate results fast and simply. Furthermore, we can also measure separately the refractive index with different polarization using polarization of the laser (TE mode and TM mode). We calculated the effective refractive index with effective medium approximations (EMAs) by pore size in the SEM image. EMAs are physical models that describe the macroscopic system as the homogeneous and typical method of all mean field theories.

  • PDF

Specification optimization and sensitivity analysis of Si3N4/SiO2 slot and ridge-slot optical waveguides for integrated-optical biochemical sensors (집적광학 바이오케미컬 센서에 적합한 Si3N4/SiO2 슬롯 및 릿지-슬롯 광 도파로 제원 최적화 및 감지도 해석)

  • Jang, Jaesik;Jung, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.139-147
    • /
    • 2021
  • Numerical analysis was performed using FIMMWAVE to optimize the specifications of Si3N4/SiO2 slot and ridge-slot optical waveguides based on confinement factor and effective mode area. The optimized specifications were confirmed based on sensitivity in terms of the refractive index of the analyte. The specifications of the slot optical waveguide, i.e., the width of the slot and the width and height of the rails, were optimized to 0.2 ㎛, 0.46 ㎛, and 0.5 ㎛ respectively. When the wavelength was 1.55 ㎛ and the refractive index of the slot was 1.3, the confinement factor and effective mode area of 0.2024 and 2.04 ㎛2, respectively, were obtained based on the optimized specifications. The thickness of the ridge and the refractive index of the slot were set to 0.04 ㎛ and 1.1, respectively, to optimize the ridge-slot optical waveguide, and the confinement factor and effective mode area were calculated as 0.1393 and 2.90 ㎛2, respectively. When the confinement coefficient and detection degree of the two structures were compared in the range of 1 to 1.3 of the analyte index, it was observed that the confinement coefficient and sensitivity were higher in the ridge-slot optical waveguide in the region with a refractive index less than 1.133, but the reverse situation occurred in the other region. Therefore, in the implementation of the integrated optical biochemical sensor, it is possible to propose a selection criterion for the two parameters depending on the value of the refractive index of the analyte.

Design of Surface Plasmon Resonance Sensor with Bruggeman Effective Medium Layers (브러그만 유효 굴절 박막에서의 표면 플라즈몬 공명 센서 설계)

  • Bae, Young-Gyu;Lee, Seung-Yeol
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.118-122
    • /
    • 2020
  • This paper proposes a specific sensor-design strategy and the possibility of improving the sensing performance, which can be obtained by replacing part of the existing plasmonic sensor based on the Kretschmann configuration method with an effective refractive-index layer. By replacing the metal layer with an effective refractive-index layer composed of gold and the material to be sensed, an improvement in the detection performance, accompanied by an increase in the sensed incident angle, is observed, and the gold-composition ratio that demonstrates the best result is presented. Subsequently, an increase in the sensed incident angle generated in the previous step can be suppressed by randomly etching a portion of the prism adjacent to the metal layer in a sub-wavelength scale. Finally, this study analyzes the optimization of the metal-layer thickness in a given sensor structure. An effective refractive thin-film surface plasmon resonance sensor design that can achieve optimal sensing performance is then proposed.

Convective Deposition of Silica Nano-Colloidal Particles and Preparation of Anti-Reflective Film by Controlling Refractive Index (콜로이드 실리카 나노입자의 부착에 의한 반사방지막 제조 및 굴절율 조절)

  • Hwang Yeon;Prevo Brian;Velev Orlin
    • Korean Journal of Materials Research
    • /
    • v.15 no.5
    • /
    • pp.285-292
    • /
    • 2005
  • Anti-reflection film was coated by using spherical silica nano colloids. Silica colloid sol was reserved between two inclined slide glasses by capillary force, and particles were convectively stacked to form a film onto the substrate as the water evaporates. As the sliding speed increased, the thickness of the film decreased and the wavelength at the maximum transmittance decreased. The microstructure observed by SEM showed that silica particles were nearly close packed, which enabled the calculation of the effective refractive index of the film. The film thickness was measured by proffer and calculated from the wavelength of maximum transmittance and the effective refractive index. The effective refractive index of the film could be controlled by a subtle controlling of the coating speed and by mixing two different sized silica particles. When the 100 nm and 50 m particles were mixed at 4:1-5:1 volume ratio, the maximum transmittance of $95.2\%$ for one-sided coating was obtained. This is the one that has increased by $3.8\%$ compared to bare glass substrate, and shows that $99.0\%$ of transmittance or $1.0\%$ of reflectance can be achieved by the simple process if both sides of the substrate are coated.

Retro-self-focusing and pinholing effect in a refractive index grating

  • Lee, Jae-Cheul
    • Journal of the Optical Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.23-25
    • /
    • 1997
  • In this paper we will show theoretically that a refractive index grating exhibits a retro-self-focusing effect and an accompanying pinholing effect under the Gaussian intensity distribution of an incident optical field. Those effects result from an effective wave number change of the medium due to the intense optical field.

Nanocomposite Cover-layer for NFR Media (Nanocomposite 이용한 NFR Media 커버층 특성연구)

  • Kim, Jin-Hong;Lee, Jun-Seok;Seo, Jeong-Kyo
    • Transactions of the Society of Information Storage Systems
    • /
    • v.3 no.1
    • /
    • pp.17-22
    • /
    • 2007
  • [ $TiO_2$ ] nanoparticles are added into UV curable resin to increase the refractive index of the cover-layer which is laminated on the media for cover-layer incident NFR. High refractive index is required for the cover-layer operating for the solid immersion lens optics with high effective numerical aperture. The eyepattern could be achieved from the cover-layer coated 20 GB ROM disc in which the refractive index of the cover-layer was 1.75, but the gap servo was unstable due to the rough surface of the cover-layer. Even though the light loss due to the nanoparticles is not serious, the rough microstructure is developed by adding the nanoparticles in the organic binder material. To achieve smooth surface for the stable gap servo, some special techniques should be added, for example the solubility of the nanoparticles should be enhanced by the optimization of the surface of the nanoparticles.

  • PDF

Novel Planar Metamaterial with a Negative Refractive Index

  • Kim, Dong-Ho;Choi, Jae-Ick
    • ETRI Journal
    • /
    • v.31 no.2
    • /
    • pp.225-227
    • /
    • 2009
  • A new planar metamaterial (MTM) with simultaneous negative values of permittivity (${\varepsilon}$) and permeability (${\mu}$) is proposed. Our MTM is composed of two identical copper patterns etched on both sides of dielectric laminate, which is very thin and easy to fabricate. Unlike conventional MTMs, the proposed structure shows a negative refractive index (NRI) behavior with respect to a normally incident wave. To explain the underlying principle of the NRI characteristics, an equivalent resonant circuit model based on surface current density distribution is investigated. An eigenmode analysis and a three-dimensional wave simulation for the stacked MTM prism are also performed to verify the existence of negative refraction. The experimental results from the transmission and reflection measurement ensure the validity of our design approach and show good agreement with the theoretically predicted effective medium parameters.

  • PDF