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In this paper we will show theoretically that a refractive index grating exhibits a retro-self-focusing effect and an
accompanying pinholing effect under the Gaussian intensity distribution of an incident optical field. Those eftects
result from an effective wave number change of the medium due to the intense optical field.

I. INTRODUCTION

In, we showed both theoretical and experimental de-
tails of a retro-self-focusing and a pinholing effect in a
cholesteric liquid crystal with a helical molecular struc-
ture. In addition to this medium, those nonlinear effects
can be also observed in a refractive index grating.
Those effects are approximately the converse of self-
focusing in a medium with quadratic index dependence.
In the case of a refractive index grating, the periodicity
of the medium causes the beam to be reflected and the
quadratic dependence of the refractive index causes the
beam to focus; This is a retro-self-focusing effect. In
this paper, we will use the plane wave approximation
to show a retro-self-focusing and a pinholing effect in
a refractive index grating.

II. PROBLEM DESCRIPTION AND
IMPLICIT SOLUTIONS

Let us consider a lossless isotropic medium of length
L whose refractive index is given by

n(z)=ny+n,cos 2B, z+ ¢

where n,<n, and ¢ is constant phase. If the refractive
indices is modified in the presence of intense optical
field, we can define the intensity-dependent refractive
index by

n(z) = ny +n, cos (2 B,z + @) + ny <> €}

where the bracket means time average, and n, is the non-
linear refractive index. Near the Bragg frequency, one can
write the field in-medium as a summation of forward-pro-
pagating wave and counter-propagating wave*!

E(z) = E,(z) exp (i Bz) + E_(z) exp (—i B2)

where B = n/c. In the slowly varying approximation,
Maxwell's equation in the medium of Eq. 1 can be

rewritten as follows:

dE
—i—— = kE_oxp[-i(24Pz - 9 + a(|E, |7+ 2|E [HE,

dE_ ‘

L KE, expli2Afz - ¢)]+ o 2|E,|*+ |E_|DE. (2)
where o = n,w/2c, AP =p-B, and the coupling coef-
ficient x = B1./2n,. Let E, = |E] e, E = |E] ¢* and sub-
stituting them in Eq. 2, we have

d|E
|dz+l =x|E_| siny
d|E_
ldz | = x|E | siny
E_ E
tj{f =2AP3z + x E_+ E_t cosy
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where 7y = 2ABz + 0,-0-¢. Then boundary conditions
are introduced as follows:

|E, (L)| = |Egl
|E_(L)| =0. 4)

One can solve the coupled amplitude equations in Eq. 3
under boundary conditions Eq. 4:

2
Vuvsiny =—{(u-J) u—(u—J)LA—f+i—z|EC 2u]

)

where u = [EJ/|EJ, J = |Ef/|Ef and [E = 4nA/3mn.L.
Multiplying Eq. 3-1 by |E| and substituting Eq. 5, we
have

L om 6)
dz

,23,
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where Q) =(u-J)ju-(u-1J) (%+;2fuj3

When the roots of Q(u) are real and u, > u, > u, > u,, Eq.
6 may be solved in terms of a Jacobian elliptic func-
tion

U, — Uy

1= (0, — ) 0y~ ISw{ 2z~ L)/ K]

u(z) =uy+

where Sn is a Jacobian elliptic function with g = 2/ [(u, -eu,)
(u.-uw)]' © and ¥ = [(u - uw)(u.-w)]} > g/2. When the
two roots of Q(u) are real and u,>u>u, and the two
roots u. and u, are complex, the solution of Eq. 6 be-
comes

Bu; + Au, + (Au, — Bu,)) Cn[2x(z—L)/g.K]
~ A+B+(A-B)Cn[2kz-L)/g, k]

u(z)

where A’ =(u,-b)+b’, B'=(u,-b)y+b>, b, = Re[u,],
b, = Im[u,], and Cn is a Jacobian elliptic function with
g=1/aB, b, = (u,-u,y - {(A-B)y}/4AB.

Now let us calculate the phase ¢, of the reflected
field at z = 0. From Eq. 5,

— 6.(0)— 6 cos-l| T 71 AB L 32 ?
6.(0)= 6,(0)— ¢ cos{ Vi J/I{ =+ =2 EC‘ ”

()

where 1= u(0). Eq. 7 shows explicitly the intensity
dependence of the phase shift on the reflected field
through the medium. Fig. 1 shows the phase of the
reflected field as a function of the normalized input
intensity 1 and the normalized detuning parameter
AB/x when ¢.(0) - = 0. The physical origin of this in-
tensity dependence of the phase of a reflected field
is as follows: In a weak field regime (n,<I>=0), the
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Fig. 1. Incident field intensity versus the phase of the reflected
field for various values of Ak/k =0, 0.1 when the phase
of the reflected field ¢,(0) = 0.

incident field will see the periodic structure with a
constant wave number [, through the medium.
However, in a strong field regime, the third term in
Eq. 1 introduces a nonuniform biased refractive in-
dex through the medium. This effectively gives rise
to the wave number change of the medium. In other
words, the incident field will see a different period-
icity.

A very interesting condition results from considering a
plane wave with intensity distribution I(x, y) = |E(x, )|
incident on the refractive index grating:

212
lp(r) =1 exp {— ;{J

where w is the spot size of the beam. Rewriting this as
a normalized intensity with |[EJ* and introducing a ra-

dial dependence, one finds
2
exp| — —
w2

For I>>J and ¢(0)<n/4, Eq. 7 reduces to

(0 7
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Under the Bragg condition / = 0, Eq. 17 becomes

3a |Eo|2r2
K w2

3a |Eo|?rt
N ®

The first term of Eq. 8 corresponds to the constant
phase change. The second term corresponds to the qua-
dratic phase change and the third term corresponds to a
spherical aberration (r' dependence). Note that ¢.(0) is
almost constant when [f| > w/2. Therefore any retro-
self-focusing effect can only occur within |r|<w/Az.
This can be interpreted as a form of pinholing or apo-
dizing effect where the aperture possesses a soft edge.
By analogy with the quadratic phase term of a Gaus-
sian beam, we can calculate the intensity dependent ra-
dius of curvature of the reflected field as

- ECIrRs
6.0)= 2[1+ | Eol

2
R=2 ! ©)
2% g, |2
K 0

Eq. 9 indicated a retro-self-focusing effect because the
radius of curvature is negative and inversely pro-
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