• Title/Summary/Keyword: Effective porosity

Search Result 339, Processing Time 0.026 seconds

A Study of the Gasdynamics of Perforated Wall (다공벽의 기체역학에 관한 연구)

  • Gwak, Jong-Ho;Kim, Heuy-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.538-543
    • /
    • 2003
  • Perforated wall has long been employed to control a variety of flow phenomena. It has been, in general, characterized by a porosity of the perforated wall. However, this porosity value does not take account of the number and detailed shape of porous holes, but is defined by only the ratio of the perforated area to total wall surface area. In order to quantify the porous wall effects on the flow control performance, an effective porosity should be known with the detailed flow properties inside the porous holes. In the present study, a theoretical analysis using a small disturbance method is performed to investigate detailed flow information through porous hole and a computational work is also carried out using the two-dimensional, compressible Navier-Stokes equations. Both the results are compared with existing experimental data. The gasdynamical porosity is defined to elucidate the effect of perforated wall.

  • PDF

Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity

  • Tlidji, Youcef;Benferhat, Rabia;Tahar, Hassaine Daouadji
    • Structural Engineering and Mechanics
    • /
    • v.77 no.2
    • /
    • pp.217-229
    • /
    • 2021
  • The effect of distribution shape of porosity using a quasi-3D theory for free vibration analysis of FG microbeams is studied analytically in the present paper. The microbeams are simply-supported and nonhomogeneous, with power function variation of Young's modulus along their thickness. The modified coupled stress theory is utilized to consolidate size dependency of microbeam. Both even and uneven distribution shape of porosity are considered and the effective properties of porous FG microbeams are defined by theoretical formula with an additional term of porosity. The equation of motion is obtained through Hamilton's principle, however, Navier type solution method is used to obtain frequencies. The influences played by many parameters are also investigated.

Effect of porosity on frost resistance of Portland cement pervious concrete

  • Zhang, Wuman;Li, Honghe;Zhang, Yingchen
    • Advances in concrete construction
    • /
    • v.6 no.4
    • /
    • pp.363-373
    • /
    • 2018
  • Portland cement pervious concrete (PCPC) is an effective pavement material to solve or reduce the urban waterlogging problems. The Mechanical properties, the permeability, the abrasion resistance and the frost resistance of PCPC without fine aggregate were investigated. The increase of porosity was achieved by fixing the dosage of coarse aggregate and reducing the amount of cement paste. The results show that the compressive strength and the flexural strength of PCPC decrease with the increase of porosity. The permeability coefficient and the wear loss of PCPC increase with the increase of the porosity. The compressive strength and the flexural strength of PCPC subjected to 25 freeze-thaw cycles are reduced by 13.7%-17.8% and 10.6%-18.3%, respectively. For PCPC subjected to the same freeze-thaw cycles, the mass loss firstly increases and then decreases with the increase of the porosity. The relative dynamic modulus elasticity decreases with the increase of freeze-thaw cycles. And the lower the PCPC porosity is, the more obvious the dynamic modulus elasticity decreases.

Synthesis and Densification of $Ti_5Si_3$-base Intermetallic Compounds by Reactive Sintering and Electro-Pressure Sintering (반응소결법 및 통전가압소결법에 의한 $Ti_5Si_3$계 금속간화합물의 합성 및 치밀화)

  • 유호준
    • Journal of Powder Materials
    • /
    • v.4 no.4
    • /
    • pp.283-290
    • /
    • 1997
  • $Ti_5Si_3$ intermetallics containing 0-6 wt% of Cu were made by reactive sintering (RS) under vacuum using elemental powder mixtures (Process 1), electro-pressure sintering (EPS) using RS'ed materials (Process2), and EPS using elemental powder mixtures (Process 3). Relatively low dense titanium silicides were gained by process 1, in which porosity decreased with increasing Cu content. For example, porosity changed from 42 to 19.4% with the increase in Cu content from 0 to 6 wt%, indicating that Cu is a useful sintering aid. The titanium silicides fabricated by Process 2 had a higher density than those by Process 1 at given composition, and porosity decreased with increasing Cu content. For example, porosity decreased from 38 to 6.8% with the change in Cu content from 0 to 6 wt%. A high dense titanium silicides were obtained by Process 3. In this Process, porosity decreased a little by Cu addition, and was almost insensitive to Cu content. Namely, about 9 or 7% of porosity was shown in 0 or 1-6 wt% Cu containing silicides, respectively. The hardeness increased by Cu addition, and was not changed markedly with Cu content for the silicides fabricated by Process 3. This tendency was considered to be resulted from porosity, hardening of grain interior by Cu addition, and softening of grain boundary by Cu-base segregates. All these results suggested that EPS using elemental powder mixtures (Process 3) is an effective processing method to achieve satisfactorily dense titanium silicides.

  • PDF

Study on Manufacturing Characteristics of Carbonated lightweight Aggregate using Sewage Sludge (하수슬러지를 이용한 탄화경량골재의 제조 특성 연구)

  • Yoo, Yeong-Seok
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.743-750
    • /
    • 2013
  • In this study, the carbonized aggregate of light weight and high mechanical strength using sewage sludge was evaluated with changing carbonation variables of temperature, detention time and feed condition. Porosity and mechanical strength was simultaneously increased according to increase of carbonization temperature unexpectedly. Carbonization detention time above 1 hour nearly affect on the porosity, but mainly on mechanical strength of the carbonized aggregate in case of clay addition. On $900^{\circ}C$, porosity and mechanical strength was increased rapidly, but above $1000^{\circ}C$, porosity began to decrease. Clay addition was very effective on increase of mechanical strength following much loss in porosity. The carbonized aggregate manufactured at $900^{\circ}C$ adding 30 % clay in sewage sludge was higher a little in porosity and 3 times in mechanical strength than those at $700^{\circ}C$ not adding clay. Consequently, in manufacturing the carbonized aggregate having simultaneously high porosity and mechanical strength, it is desirable to have operational condition of $900{\sim}1000^{\circ}C$ temperature and 1 hour time, and clay addition within 30 % for further higher mechanical strength.

LABORATORY SIMULATION OF LIGHT SCATTERING FROM REGOLITH ANALOGUES: EFFECT OF POROSITY

  • KAR, AMRITAKSHA;DEB, SANJIB;SEN, A.K.;GUPTA, RANJAN
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.65-67
    • /
    • 2015
  • The surfaces of most atmosphereless solar system objects are referred to as regolith, layers of loosely connected fragmentary debris, produced by meteorite impacts. Measurements of light scattered from such surfaces provides information about the composition and structure of the surface. A suitable way to characterize the scattering properties is to consider how the intensity and polarization of scattered light depends on the particle size, composition, porosity, roughness, wavelength of incident light and the geometry of observation. In the present work, the effect of porosity on bidirectional reflectance as a function of phase angle is studied for alumina powder with grain size of $0.3{\mu}m$ and olivine powder with grain size of $49{\mu}m$ at 543.5 nm. The optical constants of the alumina sample for each porosity were calculated with Maxwell Garnett effective medium theory. On using each of the optical constants of alumina sample in Mie theory with the Hapke model the variation of bidirectional reflectance is obtained as a function of phase angle with porosity as a parameter. Experimental reflectance data are in good agreement the model. For the olivine sample the effect of porosity is studied using Hapke (2008).

Thermo-mechanical behavior of porous FG plate resting on the Winkler-Pasternak foundation

  • Rabia, Benferhat;Tahar, Hassaine Daouadji;Abderezak, Rabahi
    • Coupled systems mechanics
    • /
    • v.9 no.6
    • /
    • pp.499-519
    • /
    • 2020
  • The effect of porosity on the thermo-mechanical behavior of simply supported functionally graded plate reposed on the Winkler-Pasternak foundation is investigated analytically in the present paper using new refined hyperbolic shear deformation plate theory. Both even and uneven distribution of porosity are taken into account and the effective properties of FG plates with porosity are defined by theoretical formula with an additional term of porosity. The present formulation is based on a refined higher order shear deformation theory, which is based on four variables and it still accounts for parabolic distribution of the transverse shearing strains and stresses through the thickness of the FG plate and takes into account the various distribution shape of porosity. The elastic foundation is described by the Winkler-Pasternak model. Anew modified power-law formulation is used to describe the material properties of FGM plates in the thickness direction. The closed form solutions are obtained by using Navier technique. The present results are verified in comparison with the published ones in the literature. The results show that the dimensionless and stresses are affected by the porosity volume fraction, constituent volume fraction, and thermal load.

Specific Resistance (K2´) of Dust Layer Deposited on Porous Media (다공성 필터에서의 여과 분진층 비저항 연구)

  • 이선희;이경미;조영민
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.371-380
    • /
    • 2004
  • In the dust separation by using porous filter media, the structure of dust layer deposited on the filter surface of filter medium directly affects the effective filtration. The present study has investigated the specific resistance (K$_2$') of the dust layer and its porosity ($\varepsilon$$_{c}$) for three different filters; FA composite filter, metal fiber filter and stainless filter. The specific resistance (K$_2$') increased and at the same time the cake porosity ($\varepsilon$$_{c}$) decreased with the increase of filtration velocity, possibly due to the compressible effect of dust layer. However, under the low dust concentration, subsequent dust particles would block the open channels through the layer resulting in high specific resistance of the layer. The FA composite filter among three filters was shown to be the most effective filter for dust cake filtration at low filtration velocities less than 0.1 m/s for an approximate dust concentration of 5 g/㎥.

Effective thermal conductivity model of porous polycrystalline UO2: A computational approach

  • Yoon, Bohyun;Chang, Kunok
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1541-1548
    • /
    • 2022
  • The thermal conductivity of uranium oxide (UO2) containing pores and grain boundaries is investigated using continuum-level simulations based on the finite-difference method in two and three dimensions. Steady-state heat conduction is solved on microstructures generated from the phase-field model of the porous polycrystal to calculate the effective thermal conductivity of the domain. The effects of porosity, pore size, and grain size on the effective thermal conductivity of UO2 are quantified. Using simulation results, a new empirical model is developed to predict the effective thermal conductivity of porous polycrystalline UO2 fuel as a function of porosity and grain size.

Limit elastic speed analysis of rotating porous annulus functionally graded disks

  • Madan, Royal;Bhowmick, Shubhankar;Hadji, Lazreg;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.375-388
    • /
    • 2022
  • In this work, limit elastic speed analysis of functionally graded porous rotating disks has been reported. The work proposes an effective approach for modeling the mechanical properties of a porous functionally graded rotating disk. Four different types of porosity models namely: uniform, symmetric, inner maximum, and outer maximum distribution are considered. The approach used is the variational principle, and the solution has been achieved using Galerkin's error minimization theory. The study aims to investigate the effect of grading indices, aspect ratio, porosity volume fraction, and porosity types on limit angular speed for uniform and variable disk geometries of constant mass. To validate the current study, finite element analysis has been used, and there is good agreement between the two methods. The study yielded a decrease in limit speed as grading indices and aspect ratio increase. The porosity volume fraction is found to be more significant than the aspect ratio effect. The research demonstrates a range of operable speeds for porous and non-porous disk profiles that can be used in industries as design data. The results show a significant increase in limit speed for an exponential disk when compared to other disk profiles, and thus, the study demonstrates a range of FG-based structures for applications in industries that will not only save material (lightweight structures) but also improve overall performance.