• Title/Summary/Keyword: Effective inertia coefficient

Search Result 10, Processing Time 0.022 seconds

Online Estimation of Rotational Inertia of an Excavator Based on Recursive Least Squares with Multiple Forgetting

  • Oh, Kwangseok;Yi, Kyong Su;Seo, Jaho;Kim, Yongrae;Lee, Geunho
    • Journal of Drive and Control
    • /
    • v.14 no.3
    • /
    • pp.40-49
    • /
    • 2017
  • This study presents an online estimation of an excavator's rotational inertia by using recursive least square with forgetting. It is difficult to measure rotational inertia in real systems. Against this background, online estimation of rotational inertia is essential for improving safety and automation of construction equipment such as excavators because changes in inertial parameter impact dynamic characteristics. Regarding an excavator, rotational inertia for swing motion may change significantly according to working posture and digging conditions. Hence, rotational inertia estimation by predicting swing motion is critical for enhancing working safety and automation. Swing velocity and damping coefficient were used for rotational inertia estimation in this study. Updating rules are proposed for enhancing convergence performance by using the damping coefficient and forgetting factors. The proposed estimation algorithm uses three forgetting factors to estimate time-varying rotational inertia, damping coefficient, and torque with different variation rates. Rotational inertia in a typical working scenario was considered for reasonable performance evaluation. Three simulations were conducted by considering several digging conditions. Presented estimation results reveal the proposed estimation scheme is effective for estimating varying rotational inertia of the excavator.

Dynamic Behavior Assessment of OC4 Semi-submersible FOWT Platform Through Morison Equation

  • Chungkuk Jin;Ikjae Lee;JeongYong Park;MooHyun Kim
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.238-246
    • /
    • 2023
  • This paper proposes an effective inertia coefficient (EIC) in the Morison equation for better wave-force calculations. The OC4 semi-submersible floating offshore wind turbine (FOWT) platform was considered to test the feasibility. Large diffraction at large Keulegan-Carpenter (KC) numbers and the interaction between columns can result in errors in estimating the wave force using the Morison equation with a theoretical inertia coefficient, which can be corrected by the EIC as a function of the wave period and direction. The horizontal and vertical wave forces were calculated using the Morison equation and potential theory at each column, wave period, and wave direction. The EICs of each column were then obtained, resulting in a minimal difference between the Morison inertia force and the wave excitation force by the potential theory. The EICs, wave forces, phase angles, and dynamic motions were compared to confirm the feasibility of an EIC concept under regular and random waves.

A Performance Analysis and Experiment of Viscous Torsional Vibration Damper for High Speed Engine Shaft System (고속엔진축계용 점성 비틀림진동감쇠기의 성능해석 및 실험)

  • Yang, B.S.;Jeong, T.Y.;Kim, K.D.;Kim, D.J.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.98-105
    • /
    • 1997
  • In general, crankshafts which are used in internal combustion reciprocating engines are subjects to high torsional vibration. Therefore, a damper is often used to minimize the torsional vibration in reciprocating engines. In this paper, in order to investigate damping performance of viscous damper, the real effective viscosity and complex damping coefficient of silicone oil, and the effective inertia moment of inertia ring are calculated considering the relative motion between damper casing and inertia ring. Based on these results multi-cylinder shaft is modeled into equivalent 2-degree of freedom system and optimum condition is estimated by calculating the amplification factor of viscous damper. Also the test damper was manufactured according to the result of theoretical investigation, the performance and durability was ascertained through experimental examination.

  • PDF

Coordinated Virtual Inertia Control Strategy for D-PMSG Considering Frequency Regulation Ability

  • Shi, Qiaoming;Wang, Gang;Ma, Weiming;Fu, Lijun;Wu, You;Xing, Pengxiang
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1556-1570
    • /
    • 2016
  • In the process of virtual inertia control (VIC), the frequency regulation capability of the directly-driven wind turbine with permanent-magnet synchronous generator (D-PMSG) on wind farm is related to its rotor kinetic energy and capacity margin. This paper proposes the method for assessing the D-PMSG frequency regulation capability and defining its coefficient according to the operating state of wind power generators. In addition, the calculating method of parameters in VIC is also discussed according to the principles of primary frequency regulation and inertia response of synchronous generators. Then, by introducing the capability coefficient into the proportion-differential virtual inertia control (PD-VIC) for power coordination, a coordinated virtual inertia control (C-VIC) strategy is developed, with the consideration of the difference in frequency regulation capability between wind power generators. The proposed control method can not only give full play to the frequency regulation capability of wind power generators, decrease the movements of the pitch angle control system but also bring some self-coordination capability to different wind power generators thus to avoid a secondary drop in system frequency. The simulations and experiments prove the proposed method to be effective and practicable.

The Inertia Friction properties of the Carbon/Carbon Composites Manufactured Using a Coal-tar Pitch (콜타르 핏치를 이용하여 제조된 탄소/탄소 복합재의 관성제동 마찰특성)

  • 이진용;서동수;임연수;이승구;박종규
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.7
    • /
    • pp.740-748
    • /
    • 1998
  • The inertia friction properties of C/C composites manufactured by the processes of pressure and at-mospheric carbonizaton with a commerciallized and two kinds of modified coal-tar pitch as a matrix pre-cursor were investigated. The modifications of a pitch such as the introduction of mesophase and the ad-dition of sulphur into a raw pitch were not effective for a impregnation efficiency conducted in a vacuum and at the same time in a pressure of 5kg/cm2 due to the increase of the pitch viscosity. There was not a difference in the densification increment between the pitch modifications however it was revealed that a pressure carbonization was more advantageous than an atmospheric in the densification and the formation of anisotropic carbon matrix. The friction and wear propertis of C/C having higher degree of matrix cry-stallization higher density and hardness of friction surface showed superiority. As the braking energy was increased the friction coefficients were decreased and reached almost same level at the high kinetic energy of 99.6kJ. The wear trends at 99.6kJ were different from the behaviors of friction ceofficient under the same energy in which an oxidation wear is being considered along with a mechnical wear although the wear rates were almost similar to the friction coefficient at the low energy.

  • PDF

A study on the viscous torsional vibration damper in a high speed diesel engine (고속디이젤 기관의 점성비틀림 진동댐퍼에 관한 연구)

  • 한영출
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.4 no.1
    • /
    • pp.20-30
    • /
    • 1982
  • Recent diesel engine has achieved high speed running comparable to that of gasoline engine as a speed improvement effort. Consequently, torsional vibration of high-speed diesel engine induced vibration nosise, reduced horsepower and the like. Viscous damper which is thought to be effective in curtailing the torsional vibration was studied over a wide range of speed. In this investigation, a water cooling, 4-cycle high-speed diesel engine(Msx. 3500 rpm)was used for the study. Theoretical analysis was made by assuming the engine to be an ideal equivalent system(length, moment of inertia) i. e. the multi-degree of freedom equivalent torsional vibration system with damper was analyzed. In the analysis, the inertia moment of suitable damper for this experiment was calculated by varying the relative damping coefficient of damper of engine for each damper. Furthermore, in the torsional vibration experiment, the torsional vibration amplitude of the crankshaft system was measured when the engine was equipped with dampers of different moments of inertia and also when the engine was equipped without dampers. The experimental results were compared with the analytical values and were found to be satisfied. The results of this investigation are summarized below; (1) It was found that for the engine equipped with dampers, the torsional vibration amplitude was reduced to about one third of those without dampers. (2) The optimum value of inertia moment of viscous damper for the engine was found to be about Id=1.05(kg.cm.s$^{2}$) (3) The optimum damping coefficient and the ratio of moment of inertia for the engine were found to be about Ca= 850(kg.cm.s), Rd=0.509, respectively (b1 dapmper).

  • PDF

Free Vibration Analysis of Timoshenko Arcs with Elastic Supports Using Transfer of Influence Coefficient (영향계수의 전달을 이용한 탄성 지지된 티모센코 호의 자유진동 해석)

  • Choi, Myung-Soo;Yeo, Dong-Jun
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.70-76
    • /
    • 2017
  • When Timoshenko arcs considering the shear deformation and rotatory inertia have elastic supports, the authors analyze in-plane free vibration of them by the transfer influence coefficient method. This method finds the natural frequencies of them using the transfer of influence coefficient after obtaining the transfer matrix of arc element from numerical integration of the differential equations governing the vibration of arc. In this study, two computer programs were made by the transfer influence coefficient method and the transfer matrix method for analyzing free vibration of Timoshenko arcs. From numerical results of four computational models, we confirmed that the transfer influence coefficient method is a reliable method when analyzing the free vibration of Timoshenko arcs. In particular, the transfer influence coefficient method is a effective method when analyzing the free vibration of arcs with rigid supports.

A Study on the Design Technique of a 5-valve Combustion Chamber for Subcompact Vehicles (경승용차용 5밸브(흡기3밸브) 가솔린 엔진의 연소실 형상 설계 기술에 관한 연구)

  • Lee, Gi-Hyeong;Seong, Baek-Gyu;Jeong, Yong-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.8
    • /
    • pp.1097-1102
    • /
    • 2001
  • For the purpose of development of high performance gasoline engine, the design technique of the 5-valve(3 intake valves) combustion chamber for a subcompact vehicle has been studied. 3 intake valves cylinder heads were designed by using a 3-dimension CAD program, and steady state flow experiments have been performed with these model. The 5-valve engines, which have larger valve opening areas, have larger intake flow rates and higher flow coefficient than the 4-valve engines. The effects of intake port design parameters of a 5-valve engine on the intake flow rate and bore size were studied, and the design guidelines for the 5-valve engine were established.

PMDV-hop: An effective range-free 3D localization scheme based on the particle swarm optimization in wireless sensor network

  • Wang, Wenjuan;Yang, Yuwang;Wang, Lei;Lu, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.61-80
    • /
    • 2018
  • Location information of individual nodes is important in the implementation of necessary network functions. While extensive studies focus on localization techniques in 2D space, few approaches have been proposed for 3D positioning, which brings the location closer to the reality with more complex calculation consumptions for high accuracy. In this paper, an effective range-free localization scheme is proposed for 3D space localization, and the sensitivity of parameters is evaluated. Firstly, we present an improved algorithm (MDV-Hop), that the average distance per hop of the anchor nodes is calculated by root-mean-square error (RMSE), and is dynamically corrected in groups with the weighted RMSE based on group hops. For more improvement in accuracy, we expand particle swarm optimization (PSO) of intelligent optimization algorithms to MDV-Hop localization algorithm, called PMDV-hop, in which the parameters (inertia weight and trust coefficient) in PSO are calculated dynamically. Secondly, the effect of various localization parameters affecting the PMDV-hop performance is also present. The simulation results show that PMDV-hop performs better in positioning accuracy with limited energy.

A Discussion on the Improvement of Pseudo-Static Seismic Design Criteria of Retaining Wall in Domestic (국내 옹벽의 유사정적 내진설계기준 개선방향에 대한 고찰)

  • Jo, Seong-Bae;Ha, Jeong Gon;Lee, Jin-Sun;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.45-53
    • /
    • 2015
  • This paper reviews the current seismic design code and research for dynamic earth pressure on retaining structures. Domestic design codes do not clearly define the estimation of dynamic earth pressure and give different comments for seismic coefficient, wall inertia and distribution of dynamic earth pressure using Mononobe-Okabe method. AASHTO has been revised reflecting current research and aims for effective seismic design. Various design codes are analyzed to compare their performance and economic efficiency. The results are used to make improvement of current domestic seismic design code. Further, it is concluded that the experimental investigation is also needed to verify and improve domestic seismic code for dynamic earth pressure.