• 제목/요약/키워드: Effective efficiency

검색결과 5,471건 처리시간 0.041초

부유선별법에 의한 제련용 몰리브덴 정광의 회수 (Recovery of Roasting-Molybdenite Concentrate by Froth Flotation)

  • 박철현;전호석;김병곤;한오형
    • 한국재료학회지
    • /
    • 제19권12호
    • /
    • pp.661-666
    • /
    • 2009
  • Froth flotation has been carried out in order to produce roasting-molybdenite concentrate from molybdenite ore in the Shin-yeomi mine. In our study, roasting-molybdenite (Mo 0.43%) from Shin-yeomi mine was recovered by varying the conditions of regrinding time, dosage of collector and alkalinity. Liberation and flotation efficiency more were effective at regrinding time of six minutes than at single grinding. Mo recovery curves increased considerably as dosage of kerosene increased, whereas Mo grade curves decreased gradually. The separation efficiency of molybdenite was effective when the dosage of collector (kerosene) was adjusted to 300 g/t. The molybdenite concentrate was agglomerated in the range of pH 5-7 and its separation efficiency increased to pH 9-10. The concentrate of 49.5% Mo grade ($MoS_2$, 82.6%) with 81.5% recovery from Shin-yeomi molybdenite ores was obtained under conditions of 20% pulp concentration, 300 g/t kerosene 325 g/t frother (AF65), 2.5 kg/t depressant ($Na_2SiO_3$), pH 9-10 and four cleaning times. In the future, a trial run that can separate up to 50% Mo grade from Shin-yeomi molybdenite ores will be performed.

Development of Optical Fiber-based Daylighting System with Uniform Illumination

  • Ullah, Irfan;Shin, Seoyong
    • Journal of the Optical Society of Korea
    • /
    • 제16권3호
    • /
    • pp.247-255
    • /
    • 2012
  • Daylighting has a very effective role in reducing power consumption and improving indoor environments in office buildings. Previously, it was not under consideration as a major source of renewable energy due to poor reliability in the design. Optical fiber as a transmission medium in the daylighting system demands uniform distribution of light to solve cost, heat, and efficiency issues. Therefore, this study focuses on the uniform distribution of sunlight through the fiber bundle and to the interior of the building. To this end, two efficient approaches for the fiber-based daylighting system are presented. The first approach consists of a parabolic mirror, and the second approach contains a Fresnel lens. Sunlight is captured, guided, and distributed through the concentrator, optical fibers, and lenses, respectively. At the capturing stage, uniform illumination solves the heat problem, which has critical importance in making the system cost-effective by introducing plastic optical fibers. The efficiency of the system is increased by collimated light, which helps to insert maximum light into the optical fibers. Furthermore, we find that the hybrid system of combining sunlight and light emitting diode light gives better illumination levels than that of traditional lighting systems. Simulation and experimental results have shown that the efficiency of the system is better than previous fiber-based daylighting systems.

소규모 오수처리 시스템에서의 제올라이트에 의한 질소 제거 (Nitrogen Removal using Zeolite at On-site Wastewater Treatment System)

  • 방천희;권순국
    • 한국농공학회지
    • /
    • 제44권2호
    • /
    • pp.161-173
    • /
    • 2002
  • Recently, absorbent biofilters, which are inexpensive and easy to manacle, have been supplied to the rural areas, but have limitations in removing the nutrients effectively. Accordingly, as an alternative plan. natural zeolites were arranged in front or at the rear of the absorbent biofilters, and their removal efficiency for nitrogen and, ultimately, their applicability to the on-site wastewater treatment system were studied. Furthermore, the same experiments were carried out on artificial zeolites, made from coal ashes at National Honam Agricultural Experiment Station, to compare natural zeolites with artificial ones. Treated wastewater through the Absorbent Biofilter showed 22.6% nitrogen removal efficiency, while 64.6% was attained when natural Zeolites were placed in front of the absorbent biofilters (Zeolite-Aerobic process). As an addition, phosphorus was also efficiently removed. On the other hand, Aerobic-Zeolite process, which arranged natural zeolites at the rear of the biofilters, did not have significantly higher nitrogen removal as compared to the treatment using only the absorbent biofilters. Furthermore, upon regeneration of the natural zeolite, the ion exchange rate was fecund to increase over 10% as compared to before regeneration. Our results show that natural zeolites, applied to the on-site wastewater treatment system through the Zeolite-Aerobic process, not only increase the removal efficiency of nutrients, but, by choosing the appropriate regeneration time, can also be cast-effective. Artificial zeolites, on the other hand, though more efficient in removing nutrients, cannot be regenerated and, therefore, are not cost-effective.

Optimization of Aerosolizable Messenger RNA Lipid Nanoparticles for Pulmonary Delivery

  • Se-Hee Lee;Jong Sam Lee;Dong-Eun Kim;Keun-Sik Kim
    • 대한의생명과학회지
    • /
    • 제29권4호
    • /
    • pp.231-241
    • /
    • 2023
  • Messenger RNA (mRNA)-based vaccines and treatments have recently emerged as a promising strategy. Naked mRNA presents various limitations for direct delivery. Therefore, in this paper, Lipid Nanoparticles (LNPs) were utilized for the delivery of mRNA. Lipid nanoparticle (LNP) mRNA systems are highly effective as vaccines, but their efficacy for pulmonary delivery has not yet been fully established. Additionally, research on effective delivery systems and administration methods for vaccines is required to resolve the stability and degradation issues associated with naked mRNA delivery. This study aimed to determine mRNA delivery efficiency via the inhalation of a lipid nanoparticle (LNP) formulation designed specifically for pulmonary delivery. To this purpose, we built a library of seven LNP configurations with different lipid molar and N/P ratios and evaluated their encapsulation efficiency using gel retardation assay. Among the tested LNPs, LNP1, LNP2-2, and LNP3-2 demonstrated high transfection efficiency in vitro based on FACS analyses luciferase assays, and intracellular accumulation tests. The mRNA delivery efficiencies of the selected LNPs after inhalation and intravenous injection were compared and evaluated. LNP2-2 showed the highest mRNA expression in healthy mouse lungs when aerosolized and was found to be non-toxic. These results indicate that LNP2-2 is a promising carrier for lung mRNA delivery via inhalation.

Analyzing the Influence of Spatial Sampling Rate on Three-dimensional Temperature-field Reconstruction

  • Shenxiang Feng;Xiaojian Hao;Tong Wei;Xiaodong Huang;Pan Pei;Chenyang Xu
    • Current Optics and Photonics
    • /
    • 제8권3호
    • /
    • pp.246-258
    • /
    • 2024
  • In aerospace and energy engineering, the reconstruction of three-dimensional (3D) temperature distributions is crucial. Traditional methods like algebraic iterative reconstruction and filtered back-projection depend on voxel division for resolution. Our algorithm, blending deep learning with computer graphics rendering, converts 2D projections into light rays for uniform sampling, using a fully connected neural network to depict the 3D temperature field. Although effective in capturing internal details, it demands multiple cameras for varied angle projections, increasing cost and computational needs. We assess the impact of camera number on reconstruction accuracy and efficiency, conducting butane-flame simulations with different camera setups (6 to 18 cameras). The results show improved accuracy with more cameras, with 12 cameras achieving optimal computational efficiency (1.263) and low error rates. Verification experiments with 9, 12, and 15 cameras, using thermocouples, confirm that the 12-camera setup as the best, balancing efficiency and accuracy. This offers a feasible, cost-effective solution for real-world applications like engine testing and environmental monitoring, improving accuracy and resource management in temperature measurement.

Comprehensive Analysis of the Corrosion Inhibition Performance of 4-Piperonylideneaminoantipyrine for Mild Steel in HCl Solution: Concentration, Time, Temperature Effects, and Mechanistic Insights

  • Ahmed Y. I. Rubaye;Sabah M. Beden;Ahmed A. Alamiery;A. A. H. Kadhum;Waleed K. Al-Azzawi
    • Corrosion Science and Technology
    • /
    • 제23권1호
    • /
    • pp.20-32
    • /
    • 2024
  • Metal corrosion in acidic environments is a major issue in various industrial applications. This study evaluates the 4-piperonylideneaminoantipyrine (PPDAA) corrosion inhibition efficiency for mild steel in a hydrochloric acid (HCl) solution. The weight loss method was used to determine the corrosion inhibition efficiency at different concentrations and immersion time periods. Results revealed that the highest inhibition efficiency (94.3%) was achieved at 5 mM concentration after 5 hours of immersion time. To inspect the surface morphology of the inhibitor film on the mild steel surface, scanning electron microscopy (SEM) was used before and after immersion in 1.0 M HCl. Density functional theory (DFT) calculations were performed to investigate the molecular structure and electronic properties of the inhibitor molecule to understand the corrosion inhibition mechanism. Theoretical results showed that the inhibitor molecule can adsorb onto the mild steel surface through its nitrogen and oxygen atoms, forming a protective layer that prevents HCl corrosive attack. These findings highlight the potential of PPDAA as an effective corrosion inhibitor for mild steel in HCl solution. Moreover, combining experimental and theoretical approaches provides insights into the mechanism of corrosion inhibition, which is essential for developing effective strategies to prevent metal corrosion in acidic environments.

역사적 건축물의 에너지 효율 향상을 위한 계획기법 -서양의 연구동향 및 사례를 중심으로- (Technical Measures for Improving Energy Efficiency in Historic Buildings -Focused on Researches and Case Studies of the West-)

  • 김태영
    • 한국농촌건축학회논문집
    • /
    • 제20권1호
    • /
    • pp.69-76
    • /
    • 2018
  • This study is to research technical measures for improving energy efficiency in the conservation and reuse of historic buildings focused on the recent research trends and case studies of the west. These measures are broadly classified into three types, the passive measures for saving energy and increasing comfort, the most cost-effective energy saving strategies, and the renewable energy sources. Firstly, the passive measures are divided into the elements and systems. The passive elements are awnings and overhanging eaves, porches, shutters, storm windows and doors, and shade trees. There are also the natural ventilation systems such as the historic transoms, roofs and attics to improve airflow and cross ventilation to either distribute, or exhaust heat. Secondly, the most cost-effective energy efficiency strategies are the interior insulation, airtightness and moisture protection, and the thermal quality improvement of windows. The energy efficiency solutions of modern buildings are the capillary-active interior insulation, the airtightness and moisture protection of interior walls and openings, and the integration of the original historic window into the triple glazing. Beyond the three actions, the additional strategies are the heat recovery ventilation, and the illumination system. Thirdly, there are photovoltaic(PV) and solar thermal energy, wind energy, hydropower, biomass, and geothermal energy in the renewable energy sources. These energy systems work effectively but it is vital to consider its visual effect on the external appearance of the building.

대학생들의 정보매체활용에 따른 학습효율성에 관한 연구 (A Study on the Learning Efficiency based on Information Media Applications for Undergraduate Students)

  • 박재용
    • 정보관리학회지
    • /
    • 제24권4호
    • /
    • pp.119-132
    • /
    • 2007
  • 본 연구는 대학생을 대상으로 정보매체활용에 따른 학습효율성의차이를 분석하였다. 연구를 위한 설문조사 표본은 모두 106개이었고, 단순회귀분석결과 컴퓨터활용능력과 정보매체활용에 대하여는t=2.990(p=0.003), sig=0.05, 정보매체활용과 학습효율성에서는t=41.758(p=0.000), sig=0.05으로 유의적으로 나타났다. 반면, 컴퓨터활용능력과 학습효율성에 관해서는t=-1.756(p=0.082), sig=0.05.로 비유의적으로 나타났다. 이에 본 연구는 정보매체를 활용한 수업방식에 있어서 보다 효과적인 교수법에 대한 기초자료를 제시하였다. 아울러 대학에서 다양하게 적용되고 있는 정보매체를 활용한 수업에 고려해야 할 사항들을 제시함으로써 효과적인 정보화교육 및 교수방법에 새로운 방향을 모색하였다.

CFD 기반 소형 선박의 EEDI 평가 방법에 관한 연구 (Study on the Evaluation Method for EEDI of the Small Vessel using CFD)

  • 박동우
    • 해양환경안전학회지
    • /
    • 제25권5호
    • /
    • pp.627-633
    • /
    • 2019
  • 본 논문의 주 관심사항은 전산유체역학과 기존 모형시험 데이터를 활용하여 주어진 선박의 저항 및 추진성능을 추정하고 그 결과를 이용하여 에너지효율설계지표(Energy Efficiency Design Index, EEDI)를 평가하는 방법을 제시하는 것이다. 대상선박의 모형선 크기에서의 전 저항을 계산하기 위해 점성 유동 해석을 수행하였다. 유동계산은 STAR-CCM+를 사용하였으며 자유표면, 트림과 싱키지를 고려하였다. 점성 유동 해석 결과를 바탕으로 대상선박의 유효동력을 산정하였다. 준 추진효율 계수는 기 보유한 모형시험 데이터베이스를 이용한 추정식 및 유사선박의 시험자료를 활용하여 산정하였다. 최종적으로 EEDI 산정식에 대하여 유체동역학적 결과, 선박의 정보, 사용하는 연료에 대한 $CO_2$의 환산계수, 연료소모량 등을 바탕으로 일반화된 계산 프로그램을 작성하였다.

소형 BLDCM 드라이브의 최적 전류제어에 관한 연구 (A Study on Optimal Current Control Method for Small BLDC Motor Drive)

  • 박창석;정태욱
    • 조명전기설비학회논문지
    • /
    • 제29권4호
    • /
    • pp.108-115
    • /
    • 2015
  • This paper proposed a optimal current control method to improve efficiency of BLDC motors. The aim of the proposed method is to use the maximum torque operating method by increasing the effective voltage at the maximum torque point unlike existing SPM operating method. The proposed method is based on existing IPM maximum torque operating method grafting onto a square wave operating of SPM motors. As the method of increasing the effective output voltage from inverter using the maximum torque point, the proposed method is to improve efficiency of BLDC motors using the same amount of the existing current effectively. For this method, the maximum torque point is carried out by FEA and analysis of magnetic flux vector. In this paper, the prototype of general-purpose BLDC drive is manufactured and the performance characteristic and validity are verified.