• Title/Summary/Keyword: Effective discharge energy

Search Result 131, Processing Time 0.03 seconds

A Study on Micro Ultrasonic machining for Brittle Material Using Ultrasonic vibration (초음파 진동을 이용한 취성재료 가공기술에 관한 연구)

  • 이석우;최헌종;이봉구
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.969-972
    • /
    • 1997
  • Ultrasonic machining technology has been developed over recent years for he manufacture of cost-effective and quality-assured precision parts for several industrial application such as optics, semiconductors, aerospace, and automobile application. The past decade has seen a tremendous in the use of ceramic in structural application. The excellent thermal, chemical and wear resistance of these material can be realized because of recent improvement in the overall strength and uniformity of advanced ceramics. Ultrasonic machining, in which abrasive particles in slurry with water are presented to the work surface in the presence of an ultrasonic-vibrating tool, is process which should be of considerable interest, as its potential is not limited by he electrical or chemical characteristics of the work material, making it suitable for application to ceramics. In order to improve the currently used ultrasonic machining using ultrasonic energy, technical accumulation is needed steadily through development of exciting device of ultrasonic machine composed of piezoelectric vibrator and horn. This paper intends to further the understanding of the basic mechanism of ultrasonic machining for brittle material and ultrasonic machining of ceramics based in the fracture-mechanic concept has been analyzed.

  • PDF

Effects of Pretreatment Time and pH low set value on Continuous Mesophilic Hydrogen Fermentation of Food Waste (열처리 시간과 pH 하한값이 음식물쓰레기 연속 중온 수소 발효에 미치는 영향)

  • Kim, Sang-Hyoun;Lee, Chae-Young
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.343-348
    • /
    • 2011
  • Since 2005, food waste has been separately collected and recycled to animal feed or aerobic compost in South Korea. However, the conventional recycling methods discharge process wastewater, which contain pollutant equivalent to more than 50% of food waste. Therefore, anaerobic digestion is considered as an alternative recycling method of food waste to reduce pollutant and recover renewable energy. Recent studies showed that hydrogen can be produced at acidogenic stage in two-stage anaerobic digestion. In this study, the authors investigated the effects of pretreatment time and pH low set value on continuous mesophilic hydrogen fermentation of food waste. Food waste was successfully converted to $H_2$ when heat-treated at $70^{\circ}C$ for 60 min, which was milder than previous studies using pH 12 for 1 day or $90^{\circ}C$. Organic acid production dropped operational pH below 5.0 and caused a metabolic shift from $H_2/butyrate$ fermentation to lactate fermentation. Therefore, alkaline addition for operational pH at or over 5.0 was necessary. At pH 5.3, the result showed that the maximum hydrogen productivity and yield of 1.32 $m^3/m^3$.d and 0.71 mol/mol $carbohydrate_{added}$. Hydrogen production from food waste would be an effective technology for resource recovery as well as waste treatment.

The Removal of Carbon-14 Scrubber for Removal of Environmental Radioactive Carbon in a Heavy Water Reactor (중수로 환경방출 방사성이산화탄소 제거 장치 개발)

  • 강덕원;지준화;엄희문
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.509-513
    • /
    • 2003
  • The radioactive Carbon, C-14, although present in small amount, emits a high energy(up to 0.156MeV) $\beta$ ray and has extremely long half-life(5730years). So special monitoring and management on its generation and discharge is inevitable. A PHWR, due to its own specific designs generates about six times as much C-14 as a PWR does and over 90% of the discharged C-14 comes from the Moderator system and discharged in to the environment through the process of periodic purging of the moderator cover gas system. The present study focussed on the development of effective C-14 scrubber and after production of a test facility and experiments using it, we found that our test facility is very efficient in $CO_2$ removal.

  • PDF

The Characteristics on the Change of Cerebral Cortex using Alternating Current Power Application for Transcranial Magnetic Stimulation

  • Kim, Whi-Young
    • Journal of Magnetics
    • /
    • v.19 no.2
    • /
    • pp.197-204
    • /
    • 2014
  • A transcranial magnetic stimulation device is a complicated appliance that employs a switching power device designed for discharging and charging a capacitor to more than 1 kV. For a simple transcranial magnetic stimulation device, this study used commercial power and controlled the firing angle using a Triac power device. AC 220V 60 Hz, the power device was used directly on the tanscranial magnetic stimulation device. The power supply device does not require a current limiting resistance in the rectifying device, energy storage capacitor or discharge circuit. To control the output power of the tanscranial magnetic stimulation device, the pulse repetition rate was regulated at 60 Hz. The change trigger of the Triac gate could be varied from $45^{\circ}$ to $135^{\circ}$. The AVR 182 (Zero Cross Detector) Chip and AVR one chip microprocessor could control the gate signal of the Triac precisely. The stimulation frequency of 50 Hz could be implemented when the initial charging voltage Vi was 1,000 V. The amplitude, pulse duration, frequency stimulation, train duration and power consumption was 0.1-2.2T, $250{\sim}300{\mu}s$, 0.1-60 Hz, 1-100 Sec and < 1 kW, respectively. Based on the results of this study, TMS can be an effective method of treating dysfunction and improving function of brain cells in brain damage caused by ischemia.

Study on operation characteristics of the cold air distribution systems with an ice storage tank (빙축열을 이용한 저온공조시스템 운전 특성 연구)

  • 염한길;박병규;고득용
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.3
    • /
    • pp.301-312
    • /
    • 1999
  • Experiments were carried out to evaluate performance of the cold air distribution systems with an ice storage tank in test room. Cold air distribution systems provide primary air for comfort conditioning or process cooling at coil discharge temperatures$4^{\circ}C$ to$11^{\circ}C$. The application of a cold air distribution system allows for the downsizing of air distribution equipment and central plant equipment when ice storage tank is used. The benefit of a cold air distribution system include a decrease in the floor-to-floor height, increase floor space, reduced building capital costs, reduced energy use and demand. The use of cold air distribution can result in the most cost effective system and is currently being implemented world wise as the new standard in air conditioning systems. In this study, the cold air distribution system is compared with the general ice storage system. Under the same cooling load conditions, experimental results show that the supply air volume of cold air distribution system decrease 38%, and decrease 45% flow rate of brine for the general ice storage system.

  • PDF

Dispersion of Highly Pure Single-Walled Carbon Nanotube in Aqueous Solution of Various Surfactants (다양한 계면활성제를 이용한 고순도 단일벽 탄소나노튜브의 수계 분산)

  • Goak, Jeung-Choon;Kim, Myoung-Su;Lee, Nae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.153-153
    • /
    • 2008
  • Practical application of single-walled carbon nanotubes (SWCNTs) qualified as a promising material has been limited by either poor dispersion or their insolubility in aqueous or organic media due to formation of bundling by relatively high surface energy. Thus, major attention to overcome this issue has been paid at surface modification of CNTs by functionalization, but this introduces defects to the sidewall of CNTs, consequently perturbing the inherent electronic and optical properties. Therefore, using surfactants is a general approach to disperse SWCNTs with lower damages by which bundled nanotubes could be dispersed up to the level of individuals or small bundles. Here, we have investigated various surfactants for their efficiency in dissolving purified SWCNTs produced by arc discharge in deionized water. To compare the surfactants respectively, we have determined the least amount of each surfactant to suspend the nanotubes under optimized experimental conditions(CNT amount, sonication power, and centrifugation speed, etc.) set on the basis of the most common surfactant (sodium dodecyl sulfate, SDS) and discussed the qualitative and quantitative characterization of SWCNT dispersions by UV-Vis absorption spectroscopy. Quantitative aspect about nanotube dispersion was that in particular N-methyl-2-pyrrolidone (NMP) and sodium dodecylbenzene sulfonate (NaDDBS) were found to be effective in dispersing individual tubes.

  • PDF

Battery Lifetime Enhancement Technology Using Recovery Effect (회복효과를 이용한 배터리 사용시간 연장기술)

  • Jang, Yong-Ju;Lee, Seong-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.48 no.6
    • /
    • pp.33-38
    • /
    • 2011
  • In recent years, mobile devices and high-hearth because of the multi-functional, battery usage is increasing. But compared to the required computing power increases the battery's energy capacity of the research is going slowly. In this paper we use the battery discharge characteristics, can be used in battery research and to increase the effective capacity, wireless transmission of power from the system just by turning off the technology to extend battery life is explained. Experimental transmission of images through the standard battery drain intervals according to measuring battery life, and applications used in these experiments and heuristic to optimize battery run time was achieved.

Development of LED Street Lighting Controller for Wind-Solar Hybrid Power System

  • Lee, Yong-Sik;Gim, Jae-Hyeon
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.5
    • /
    • pp.1643-1653
    • /
    • 2014
  • This paper presents the design and implementation of a wind-solar hybrid power system for LED street lighting and an isolated power system. The proposed system consists of photovoltaic modules, a wind generator, a storage system (battery), LED lighting, and the controller, which can manage the power and system operation. This controller has the functions of maximum power point tracking (MPPT) for the wind and solar power, effective charging/discharging for the storage system, LED dimming control for saving energy, and remote data logging for monitoring the performance and maintenance. The proposed system was analyzed in regard to the operation status of the hybrid input power and the battery voltage using a PSIM simulation. In addition, the characteristics of the proposed system's output were analyzed through experimental verification. A prototype was also developed which uses 300[W] of wind power, 200[W] of solar power, 60[W] LED lighting, and a 24[V]/80[Ah] battery. The control system principles and design scheme of the hardware and software are presented.

Study and Recovery on the Capacity Loss after the Long Charge-discharge Operation of VRFB-ESS (장시간 충방전에 따른 VRFB-ESS의 용량 손실 회복에 대한 연구)

  • Hai-Kyung, Seo;Wonshik, Park;Jae-woo, Park;Kangsan, Kim;Hansol, Choi
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.8 no.2
    • /
    • pp.181-187
    • /
    • 2022
  • As the charges/discharges of VRFB-ESS were repeated during 150cycles or more, the capacity of electrolyte in VRFB-ESS was decreased little by little. It results from the decreasing of the level of anolyte and the increasing of the valance value of the catholyte. Then, we tried to recover the capacity loss with 3 different ways. The first way was that the levels of anolyte and catholyte were allowed to be evenly equalized when the difference in the levels of two different electrolytes were severe. The second one was to lessen the valance value of the catholyte through the reduction reaction to 4-valant ions of 5-valant ions in the catholyte with the reductant, oxalic acid. The last one was that the all electrolytes of analyte and catholyte were allowed to be electro-chemically reduced to 3.5 of the valance value by oxidizing new electrolyte with 3.5 valance ions. The last way was the most effective to recover the capacity loss.

Effect of Al and Nb Doping on the Electrochemical Characteristics of Garnet-type Li7La3Zr2O12 Solid Electrolytes

  • Ahmed Tarif;Chan-Jin Park
    • Corrosion Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.408-418
    • /
    • 2023
  • In this study, we synthesized and characterized garnet-type Li7-xAlxLa3Zr2-(5/4)yNbyO12 (LALZN) solid electrolytes for all-solid-state battery applications. Our novel approach focused on enhancing ionic conductivity, which is crucial for battery efficiency. A systematic examination found that co-doping with Al and Nb significantly improved this conductivity. Al3+ and Nb5+ ions were incorporated at Li+ and Zr4+ sites, respectively. This doping resulted in LALZN electrolytes with optimized properties, most notably enhanced ionic conductivity. An optimized mixture with 0.25 mol each of Al and Nb dopants achieved a peak conductivity of 1.32 × 10-4 S cm-1. We fabricated symmetric cells using these electrolytes and observed excellent charge-discharge profiles and remarkable cycling longevity, demonstrating the potential for long-term application in battery systems. The garnet-type LALZN solid electrolytes, with their high ionic conductivity and stability, show great potential for enhancing the performance of all-solid-state batteries. This study not only advances the understanding of effective doping strategies but also underscores the practical applicability of the LALZN system in modern energy storage solutions.