• Title/Summary/Keyword: Effective core potential

Search Result 77, Processing Time 0.024 seconds

Two-Component Spin-orbit Effective Core Potential Calculations with an All-electron Relativistic Program DIRAC

  • Park, Young-Choon;Lim, Ivan S.;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.803-808
    • /
    • 2012
  • We have implemented two-component spin-orbit relativistic effective core potential (SOREP) methods in an all-electron relativistic program DIRAC. This extends the capacity of the two-component SOREP method to many ground and excited state calculations in a single program. As the test cases, geometries and energies of the small halogen molecules were studied. Several two-component methods are compared by using spin-orbit and scalar relativistic effective core potentials. For the $I_2$ molecule, excitation energies of low-lying excited states agree well with those from corresponding all-electron methods. Efficiencies in SOREP calculations enhanced by using symmetries are also discussed briefly.

Ab initio Effective Core Potential Calculations for Silane and Chlorosilanes

  • Lee, Sang-Yeon;Lee, Yoon-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.7 no.3
    • /
    • pp.218-224
    • /
    • 1986
  • The electronic structures of silane and chlorosilanes are studied by the SCF calculations using effective core potentials (ECP's). The results obtained with ECP's are in good agreement with corresponding all electron calculations demonstrating the reliability of ECP employed. The importance of polarization functions for the second row atoms is also evident in this study. The SCF calculations of silane and chlorosilanes are useful in qualitative understanding of many chemical properties since many trends are correctly obtained with the polarization functions included in basis sets of reasonable size.

KPACK: Relativistic Two-component Ab Initio Electronic Structure Program Package

  • Kim, Inkoo;Lee, Yoon Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.1
    • /
    • pp.179-187
    • /
    • 2013
  • We describe newly developed software named KPACK for relativistic electronic structure computation of molecules containing heavy elements that enables the two-component ab initio calculations in Kramers restricted and unrestricted formalisms in the framework of the relativistic effective core potential (RECP). The spin-orbit coupling as relativistic effect enters into the calculation at the Hartree-Fock (HF) stage and hence, is treated in a variational manner to generate two-component molecular spinors as one-electron wavefunctions for use in the correlated methods. As correlated methods, KPACK currently provides the two-component second-order M${\o}$ller-Plesset perturbation theory (MP2), configuration interaction (CI) and complete-active-space self-consistent field (CASSCF) methods. Test calculations were performed for the ground states of group-14 elements, for which the spin-orbit coupling greatly influences the determination of term symbols. A categorization of three procedures is suggested for the two-component methods on the basis of spin-orbit coupling manifested in the HF level.

Effect of open-core screw dislocation on axial conductivity in semiconductor crystals

  • Taira, Hisao;Sato, Motohiro
    • Advances in nano research
    • /
    • v.1 no.3
    • /
    • pp.171-182
    • /
    • 2013
  • The alternating current (AC) conductivity in semiconductor crystals with an open-core screw dislocation is studied in the current work. The screw dislocation in crystalline media results in an effective potential field which affects the electronic transport properties of the system. Therefore, from a technological view point, it is interesting to investigate properties of AC conductivity at frequencies of a few terahertz. To quantify the screw-induced potential effect, we calculated the AC conductivity of dislocated crystals using the Kubo formula. The conductivity showed peaks within the terahertz frequency region, where the amplitude of the AC conductivity was large enough to be measured in experiments. The measurable conductivity peaks did not arise in dislocation-free crystals threaded by a magnetic flux tube. These results imply different conductivity mechanisms in crystals with a screw dislocation than those threaded by a magnetic flux tube, despite the apparent similarity in their electronic eigenstates.

One-dimensional Bi-Te core/shell structure grown by a stress-induced method for the enhanced thermoelectric properties

  • Kang, Joo-Hoon;Ham, Jin-Hee;Lee, Woo-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.47-47
    • /
    • 2009
  • The formation of variable one-dimensional structures including core/shell structure is of particular significance with respect to potential applications for thermoelectric devices with the enhanced figure of merit ($ZT=S2{\sigma}T/{\kappa}$). We report the fabrication of Bi-Te core/shell nanowire based on a novel stress induced method. Fig. 1 schematically shows the nanowire fabrication process. Bi nanowires are grown on the Si substrate by the stress-induced method, and then Te is evaporated on the Bi nanowires. Fig. 2 is a transmission electron microscopy image clearly showing a core/shell structure for which effective phonon scattering and quantum confinement effect are expected. Electrical conductivity of the core/shell nanowire was measured at the temperatures from 4K to 300K, respectively. Our results demonstrate that Bi-Te core/shell nanowire can be grown successfully by the stress-induced method. Based on the result of electrical transport measurement and characteristic morphology of rough surface, Seebeck coefficient and thermal conductivity of Bi-Te core/shell nanowires are presented.

  • PDF

Analytical Analysis of PT Ferroresonance in the Transient-State (과도상태에서 PT 철공진의 해석적 분석)

  • Kang, Yong-Cheol;Lee, Byung-Eun;Zheng, Tai-Ying;Kim, Yeon-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.860-865
    • /
    • 2010
  • When a circuit breaker is opened, a large capacitance around the buses, the circuit breaker and the potential transformer (PT) might cause PT ferroresonance. During PT ferroresonance, the iron core repeats saturation and unsaturation even though the supplied voltage is a rated voltage. This paper describes an analytical analysis of PT ferroresonance in the transient-state. To analyze ferroresonance analytically, the iron core is modelled by a simplified two-segment core model in this paper. Thus, a nonlinear ordinary differential equation (ODE) for the flux linkage is changed into a linear ODE with constant coefficients, which enables an analytical analysis. In this simplified model, each state, which is either saturated or unsaturated state, corresponds to one of the three modes, i.e. overdamping, critical damping and underdamping. The flux linkage and the voltage in each state are obtained analytically by solving the linear ODE with constant coefficients. The proposed transient analysis is effective in the more understanding of ferroresonance and thus can be used to design a ferroresonance prevention or suppression circuit of a PT.

Performance based assessment for tall core structures consisting of buckling restrained braced frames and RC walls

  • Beiraghi, Hamid;Alinaghi, Ali
    • Earthquakes and Structures
    • /
    • v.21 no.5
    • /
    • pp.515-530
    • /
    • 2021
  • In a tall reinforced concrete (RC) core wall system subjected to strong ground motions, inelastic behavior near the base as well as mid-height of the wall is possible. Generally, the formation of plastic hinge in a core wall system may lead to extensive damage and significant repairing cost. A new configuration of core structures consisting of buckling restrained braced frames (BRBFs) and RC walls is an interesting idea in tall building seismic design. This concept can be used in the plan configuration of tall core wall systems. In this study, tall buildings with different configurations of combined core systems were designed and analyzed. Nonlinear time history analysis at severe earthquake level was performed and the results were compared for different configurations. The results demonstrate that using enough BRBFs can reduce the large curvature ductility demand at the base and mid-height of RC core wall systems and also can reduce the maximum inter-story drift ratio. For a better investigation of the structural behavior, the probabilistic approach can lead to in-depth insight. Therefore, incremental dynamic analysis (IDA) curves were calculated to assess the performance. Fragility curves at different limit states were then extracted and compared. Mean IDA curves demonstrate better behavior for a combined system, compared with conventional RC core wall systems. Collapse margin ratio for a RC core wall only system and RC core with enough BRBFs were almost 1.05 and 1.92 respectively. Therefore, it appears that using one RC core wall combined with enough BRBF core is an effective idea to achieve more confidence against tall building collapse and the results demonstrated the potential of the proposed system.

Enhanced UV-Light Emission in ZnO/ZnS Quantum Dot Nanocrystals (산화아연/황화아연 양자점 나노결정에서의 향상된 자외선 방출)

  • Kim, Ki-Eun;Kim, Woong;Sung, Yun-Mo
    • Korean Journal of Materials Research
    • /
    • v.18 no.12
    • /
    • pp.640-644
    • /
    • 2008
  • ZnO/ZnS core/shell nanocrystals (${\sim}5-7\;nm$ in diameter) with a size close to the quantum confinement regime were successfully synthesized using polyol and thermolysis. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) analyses reveal that they exist in a highly crystalline wurtzite structure. The ZnO/ZnS nanocrystals show significantly enhanced UV-light emission (${\sim}384\;nm$) due to effective surface passivation of the ZnO core, whereas the emission of green light (${\sim}550\;nm$) was almost negligible. They also showed slight photoluminescence (PL) red-shift, which is possibly due to further growth of the ZnO core and/or the extension of the electron wave function to the shell. The ZnO/ZnS core/shell nanocrystals demonstrate strong potential for use as low-cost UV-light emitting devices.

Synthesis of the Multifunctional Core/Intermediate/Shell Nanoparticles: Tunable Magnetic and Photoluminescence Properties (자성 및 발광 특성이 조절 가능한 다기능 코어/중간체/쉘 나노 입자 합성)

  • Kim, Mun-Kyoung;Kim, Seyun;Moon, Kyoung-Seok;Shin, Weon Ho;Jeong, Hyung Mo
    • Journal of Powder Materials
    • /
    • v.26 no.6
    • /
    • pp.463-470
    • /
    • 2019
  • Fe3O4/SiO2/YVO4:Eu3+ multifunctional nanoparticles are successfully synthesized by facile stepwise sol-gel processes. The multifunctional nanoparticles show a spherical shape with narrow size distribution (approximately 40 nm) and the phosphor shells are well crystallized. The Eu3+ shows strong photoluminescence (red emission at 619 nm, absorbance at 290 nm) due to an effective energy transfer from the vanadate group to Eu. Core-shell structured multifunctional nanoparticles have superparamagnetic properties at 300 K. Furthermore, the core-shell nanoparticles have a quick response time for the external magnetic field. These results suggest that the photoluminescence and magnetic properties could be easily tuned by either varying the number of coating processes or changing the phosphor elements. The nanoparticles may have potential applications for appropriate fields such as laser systems, optical amplifiers, security systems, and drug delivery materials.

Dynamics of Bacterial Communities by Apple Tissue: Implications for Apple Health

  • Hwa-Jung Lee;Su-Hyeon Kim;Da-Ran Kim;Gyeongjun Cho;Youn-Sig Kwak
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1141-1148
    • /
    • 2023
  • Herein, we explored the potential of the apple's core microbiota for biological control of Erwinia amylovora, which causes fire blight disease, and analyzed the structure of the apple's bacterial community across different tissues and seasons. Network analysis results showed distinct differences in bacterial community composition between the endosphere and rhizosphere of healthy apples, and eight taxa were identified as negatively correlated with E. amylovora, indicating their potential key role in a new control strategy against the pathogen. This study highlights the critical role of the apple's bacterial community in disease control and provides a new direction for future research in apple production. In addition, the findings suggest that using the composition of the apple's core taxa as a biological control strategy could be an effective alternative to traditional chemical control methods, which have been proven futile and environmentally harmful.