• Title/Summary/Keyword: Effective Plate

Search Result 1,467, Processing Time 0.025 seconds

FREE VIBRATION ANALYSIS OF PERFORATED PLATE WITH SQUARE PENETRATION PATTERN USING EQUIVALENT MATERIAL PROPERTIES

  • JHUNG, MYUNG JO;JEONG, KYEONG HOON
    • Nuclear Engineering and Technology
    • /
    • v.47 no.4
    • /
    • pp.500-511
    • /
    • 2015
  • In this study, the natural frequencies of the perforated square plate with a square penetration pattern are obtained as a function of ligament efficiency using the commercial finite-element analysis code ANSYS. In addition, they are used to extract the effective modulus of elasticity under an assumption of a constant Poisson's ratio. The effective modulus of elasticity of the fully perforated square plate is applied to the modal analysis of a partially perforated square plate using a homogeneous finite-element analysis model. The natural frequencies and the corresponding mode shapes of the homogeneous model are compared with the results of the detailed finite-element analysis model of the partially perforated square plate to check the validity of the effective modulus of elasticity. In addition, the theoretical method to calculate the natural frequencies of a partially perforated square plate with fixed edges is suggested according to the Rayleigh-Ritz method.

Effects of plate slenderness on the ultimate strength behaviour of foam supported steel plate elements

  • Pokharel, Narayan;Mahendran, Mahen
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.407-422
    • /
    • 2005
  • Plate elements in fully profiled sandwich panels are generally subjected to local buckling failure modes and this behaviour is treated in design by using the conventional effective width method for plates with a width to thickness (b/t) ratio less than 100. If the plate elements are very slender (b/t > 1000), the panel failure is governed by wrinkling instead of local buckling and the strength is determined by the flexural wrinkling formula. The plate elements in fully profiled sandwich panels do not fail by wrinkling as their b/t ratio is generally in the range of 100 to 600. For this plate slenderness region, it was found that the current effective width formula overestimates the strength of the fully profiled sandwich panels whereas the wrinkling formula underestimates it. Hence a new effective width design equation has been developed for practical plate slenderness values. However, no guidelines exist to identify the plate slenderness (b/t) limits defining the local buckling, wrinkling and the intermediate regions so that appropriate design rules can be used based on plate slenderness ratios. A research study was therefore conducted using experimental and numerical studies to investigate the effect of plate slenderness ratio on the ultimate strength behaviour of foam supported steel plate elements. This paper presents the details of the study and the results.

Static Analysis of Trapezoidal Corrugated Plates under Uniformly Distributed Load (균일 분포하중을 받는 사다리꼴 주름판의 정적 해석)

  • Kim, Young-Wann
    • Journal of Power System Engineering
    • /
    • v.18 no.1
    • /
    • pp.99-105
    • /
    • 2014
  • In this paper, the static characteristics of the trapezoidal corrugated plate under uniformly distributed pressure are investigated by the analytical method. Because the corrugated plate is very flexible in the corrugation direction and stiff in the transverse direction, the corrugated plate is treated as the orthotropic plate. This equivalent orthotropic plate must include both the extensional and flexural effect to obtain the precise solution. The effective extensional and flexural stiffness of the trapezoidal corrugated plate are derived to consider these effects in the analysis. To demonstrate the validity of the proposed approach, the comparison is made with the previously published results. Some numerical results are presented to check the effect of the geometric properties.

An Analytical Study on Prediction of Effective Elastic Constants of Perforated Plate

  • Lee Jae-Kon;Kim Jin-Gon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2224-2230
    • /
    • 2005
  • In this study, the validity of the Eshelby-type model for predicting the effective Young's modulus and in-plane Poisson's ratio of the 2-dimensional perforated plate has been investigated in terms of the porosity size and its arrangement. The predicted results by the Eshelby-type model are compared with those by finite element analysis. Whenever the ratio of the porosity size to the specimen size becomes smaller than 0.07, the effective elastic constants predicted by finite element analysis are convergent regardless of the arrangement of the porosities. Under these conditions, the effective Young's moduli of the perforated plate can be predicted within the accuracy of $5\%$ by the Eshelby-type model, which overestimates and underestimates the effective Poisson's ratios by $10\%\;and\;6\%$ for the plates with periodically and non-periodically arranged porosities, respectively.

Assessment of Equivalent Elastic Modulus of Perforated Spherical Plates

  • JUMA, Collins;NAMGUNG, Ihn
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.1
    • /
    • pp.8-17
    • /
    • 2019
  • Perforated plates are used for the steam generator tube-sheet and the Reactor Vessel Closure Head in the Nuclear Power Plant. The ASME code, Section III Appendix A-8000, addresses the analysis of perforated plates, however, this analysis is only limited to the flat plate with a triangular perforation pattern. Based on the concept of the effective elastic constants, simulation of flat and spherical perforated plates and their equivalent solid plates were carried out using Finite Element Analysis (FEA). The isotropic material properties of the perforated plate were replaced with anisotropic material properties of the equivalent solid plate and subjected to the same loading conditions. The generated curves of effective elastic constants vs ligament efficiency for the flat perforated plate were in agreement with the design curve provided by ASME code. With this result, a plate with spherical curvature having perforations can be conveniently analyzed with equivalent elastic modulus and equivalent Poisson's ratio.

A Study on the Wide Reach Nozzle of Sprayer (V) -The Long Range Nozzle- (휴반용 분무기의 Nozzle에 관한 연구(V) -원거리용 Nozzle-)

  • 옹장우;이상우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.17 no.4
    • /
    • pp.3991-4000
    • /
    • 1975
  • It is the aim of this study to investigate the influence of the factors in the sprayer nozzle for the travelling distance and to get nozzle design data in relation to the nozz1e with and without swirl plate. The factors of sprayer nozzle are composed of the spraying pressure, the helical angle of swirl plate, the helical groove depth of swirl plate, the distance of vortex chamber the slope of nozz1e cap, the curvature of nozzle cap and the hole diameter of nozz1e cap. The travelling distance and the size of sprayed particle are experimeted indoors by the factorial arrange-ment according to the 5 each level of the above factors. The results of this stupy are summarized as follows; 1. In the nozzle with swirl p1ate there were remarkable significance among factors each other, while without swirl plate were no significance. 2. The helical angle and groove depth in the nozzle with swirl plate were the highest effective factors. The effect of helical angle was very remarked in the quadratic curve with minium value. 3. The correlation betweenthe travelling distance and the sprayed particle size was no high and under 250 micron in the case with swirl plate, and there was higher correlation in the case without swirl plate. 4. The new ideal development of the swirl plate using of the most effective helical angle and groove depth will probably show the possiblities to make effective travelling distance over 8 meters and more over and to make average particle diameter under 300 micron.

  • PDF

Effective Ozone Generation from Hole Gaps in Water (공전극(孔電極)을 사용(使用)한 효과적(效果的)인 수중(水中) 오존발생(發生))

  • Moon, Jae-Duk;Kim, Jin-Gyu;Kim, Kee-Ung;Choi, Jung-Uk;Kim, Chang-Bae
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1625-1627
    • /
    • 1994
  • A potential to effective ozone generation for 4 kinds of gap, a hole-to-plate gap, a hole-to-hole gap, a hole-to-rod gap and a plate-to-plate gap in tap water has been investigated. It is found that the hole gaps indicated higher ozone generation compared to that of the plate-to-plate gap. As a result, the hole gaps could be an effective means to generate ozone in water by utilizing both of one generation mechanisms of the discharge and the electrolysis.

  • PDF

Effective Beam Width Coefficients for Lateral Stiffness in Flat-Plate Structures

  • Park, Jung-Wook;Kim, Chul-Soo;Song, Jin-Gyu;Lee, Soo-Gon
    • KCI Concrete Journal
    • /
    • v.13 no.2
    • /
    • pp.49-57
    • /
    • 2001
  • Flat-plate buildings are commonly modeled as two-dimensional frames to calculate unbalanced moments, lateral drift and shear at slab-column connections. The slab-column frames under lateral loads are analyzed using effective beam width models, which is convenient for computer analysis. In this case, the accuracy of this approach depends on the exact values of effective beam width to account for the actual behavior of slab-column connections. In this parametric study, effective beam width coefficients for wide range of the variations are calculated on the several types of slab-column connections, and the results are compared with those of other researches. Also the formulas for effective beam width coefficients are proposed and verified by finite element analysis. The proposed formulas are founded to be more suitable than others for analyzing flat-plate buildings subjected to lateral loading.

  • PDF

Local buckling and shift of effective centroid of cold-formed steel columns

  • Young, Ben
    • Steel and Composite Structures
    • /
    • v.5 no.2_3
    • /
    • pp.235-246
    • /
    • 2005
  • Local buckling is a major consideration in the design of thin-walled cold-formed steel sections. The main effect of local buckling in plate elements under longitudinal compressive stresses is to cause a redistribution of the stresses in which the greatest portion of the load is carried near the supporting edges of the plate junctions. The redistribution produces increased stresses near the plate junctions and high bending stresses as a result of plate flexure, leading to ultimate loads below the squash load of the section. In singly symmetric cross-sections, the redistribution of longitudinal stress caused by local buckling also produces a shift of the line of action of internal force (shift of effective centroid). The fundamentally different effects of local buckling on the behaviour of pin-ended and fixed-ended singly symmetric columns lead to inconsistencies in traditional design approaches. The paper describes local buckling and shift of effective centroid of thin-walled cold-formed steel channel columns. Tests of channel columns have been described. The experimental local buckling loads were compared with the theoretical local buckling loads obtained using an elastic finite strip buckling analysis. The shift of the effective centroid was also compared with the shift predicted using the Australian/New Zealand and American specifications for cold-formed steel structures.

A method for effective beam widths of slabs in flat plate structures under gravity and lateral loads

  • Choi, Jung-Wook;Song, Jin-Gyu
    • Structural Engineering and Mechanics
    • /
    • v.21 no.4
    • /
    • pp.451-468
    • /
    • 2005
  • Effective beam width models are commonly used to obtain the lateral stiffness of flat plate structures. In these models, an effective beam width is defined as the width when the flexural stiffness of the beam element equals the slab stiffness. In this present study, a method to obtain effective beam widths that considers the effects of connection geometry and slab cracking is analytically proposed. The rectangularity of the vertical member for the connection geometry and the combined effects of creep and shrinkage for the slab cracking are considered. The results from the proposed method are compared with experimental results from a test structure having nine slab-column connections.