• Title/Summary/Keyword: Effective Number of nodes

Search Result 167, Processing Time 0.028 seconds

An energy efficient clustering scheme by adjusting group size in zigbee environment (Zigbee 환경에서 그룹 크기 조정에 의한 에너지 효율적인 클러스터링 기법)

  • Park, Jong-Il;Lee, Kyoung-Hwa;Shin, Yong-Tae
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.342-348
    • /
    • 2010
  • The wireless sensor networks have been extensively researched. One of the issues in wireless sensor networks is a developing energy-efficient clustering protocol. Clustering algorithm provides an effective way to extend the lifetime of a wireless sensor networks. In this paper, we proposed an energy efficient clustering scheme by adjusting group size. In sensor network, the power consumption in data transmission between sensor nodes is strongly influenced by the distance of two nodes. And cluster size, that is the number of cluster member nodes, is also effected on energy consumption. Therefore we proposed the clustering scheme for high energy efficiency of entire sensor network by controlling cluster size according to the distance between cluster header and sink.

Development of Intelligent Data Validation Scheme for Sensor Network (센서 네트워크를 위한 지능형 데이터 유효화 기법의 개발)

  • Youk, Yui-Su;Kim, Sung-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.5
    • /
    • pp.481-486
    • /
    • 2007
  • Wireless Sensor Network(WSNs) consists of small sensor nodes with sensing, computation, and wireless communication capabilities. The large number of sensor nodes in a WSN means that there will often be some nodes which give erroneous sensor data owing to several reasons such as power shortage and transmission error. Generally, these sensor data are gathered by a sink node to monitor and diagnose the current environment. Therefore, this can make it difficult to get an effective monitoring and diagnosis. In this paper, to overcome the aforementioned problems, intelligent sensor data validation method based on PCA(Principle Component Analysis) is utilized. Furthermore, a practical implementation using embedded system is given to show the feasibility of the proposed scheme.

Structural dynamics modification using non-matching substructure synthesis. (비부합 결합을 이용한 구조물 변경법)

  • 정의일;박윤식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.666-671
    • /
    • 2002
  • For a large structure, substructure based SDM(structural dynamics modification) method is very effective to raise its dynamic characteristics. Dividing into smaller substructures has a major advantage in the aspect of computation especially for getting sensitivities, which are in the core of SDM process. But quite often, non-matching nodes problem occurs in the process of synthesizing substructures. The reason is that, in general, each substructure is modelled separately, then later combined together to form a entire structure model under interface constraint conditions. Without solving the non-matching nodes problem, the substructure based SDM can not be processed. In this work, virtual node concept is introduced. Lagrange multipliers are used to enforce the interface compatibility constraint. The governing equation of whole structure is derived using hybrid variational principle. The eigenvalues of whole structure are calculated using determinant search method. The number of degrees of freedom of the eigenvalue problem can be drastically reduced to just the number of interface degree of freedom. Thus, the eigenvalue sensitivities can be easily calculated, and further SDM can be efficiently performed. Some numerical problems are tested to show the effectiveness of handling non-matching nodes.

  • PDF

A Study on the Effective Routing Algorithm for Mobile Ad-hoc Wireless Program Developed Network (Ad-hoc 이동 통신망에서의 무료통신이 가능한 라우팅 알고리즘 프로그램 개발 연구)

  • Lee, Dong chul;Oh, Goo Young;You, Sung-Pil;Lee, Hye soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.601-603
    • /
    • 2013
  • The nodes of Ad-hoc network are made up of location registration for sending informations and a great number of packet transmissions to maintain routing route among the nodes. Under this environment, a huge number of traffics would be generated as mobility variable occurs more than in physical network. Hence, in this paper, focused on to study the relationship of nodes to analyze the extent of the traffic in order to control the traffics of the multi-hop in Ad-hoc.

  • PDF

A Study on the Effective Routing Algorithm for Mobile Ad-hoc Wireless Program Develop Network (Ad-hoc 통신망에서 요구되는 라우팅 알고리즘 프로그램 개발연구)

  • Lee, Dong chul;Kim, Sung gwun;Cho, Se hyun;Lee, Hye soo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.623-625
    • /
    • 2012
  • The nodes of Ad-hoc network are made up of location registration for sending informations and a great number of packet transmissions to maintain routing route among the nodes. Under this environment, a huge number of traffics would be generated as mobility variable occurs more than in physical network. Hence, in this paper, focused on to study the relationship of nodes to analyze the extent of the traffic in order to control the traffics of the multi-hop in Ad-hoc.

  • PDF

Shared Channel Scheme and Routing Algorithms of Every - Other- Row - Connecting Bilayered ShuffleNet for WDM Optical Networks (격행 연결 이중층 셔플넷을 이용한 광 WDM 네트워크 채널공유방식과 라우팅 알고리즘)

  • Ji, Yun-Gyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.11
    • /
    • pp.804-809
    • /
    • 2001
  • In this paper, a shared channel scheme and routing algorithms are proposed to reduce the number of wavelength channels for the optical WDM multihop networks using the every-other-row-connecting bilayered ShuffleNet scheme. In the shared channel scheme proposed, 2P nodes share the common wavelength channel reducing the number of required channels compare to other ones. By assigning an effective address each node, packets can be routed to the destination nodes through the intermediate nodes.

  • PDF

Fault-Tolerant Adaptive Routing : Improved RIFP by using SCP in Mesh Multicomputers (적응적 오류 허용 라우팅 : SCP를 이용한 메쉬 구조에서의 RIFP 기법 개선)

  • 정성우;김성천
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.11
    • /
    • pp.603-609
    • /
    • 2003
  • Adaptive routing methods are studied for effective routing in many topologies where occurrence of the faulty nodes are inevitable. Mesh topology provides simplicity in implementing these methods. Many routing methods for mesh are able to tolerate a large number of faults enclosed by a rectangular faulty block. But they consider even good nodes in the faulty block as faulty nodes. Hence, it results the degradation of node utilization. This problem is solved by a method which transmits messages to destinations within faulty blocks via multiple “intermediate nodes”. It also divides faulty block into multiple expanded meshes. With these expanded meshes, DAG(Directed Acyclic Graph) is formed and a message is able to be routed by the shortest path according to the DAG. Therefore, the additional number of hops can be resulted. We propose a method that reduces the number of hops by searching direct paths from the destination node to the border of the faulty block. This path is called SCP(Short-Cut Path). If the path and the traversing message is on the same side of outside border of the faulty block, the message will cut into the path found by our method. It also reduces the message traverse latency between the source and the destination node.

Implementation of Efficient Distributed Crawler through Stepwise Crawling Node Allocation

  • Kim, Hyuntae;Byun, Junhyung;Na, Yoseph;Jung, Yuchul
    • Journal of Advanced Information Technology and Convergence
    • /
    • v.10 no.2
    • /
    • pp.15-31
    • /
    • 2020
  • Various websites have been created due to the increased use of the Internet, and the number of documents distributed through these websites has increased proportionally. However, it is not easy to collect newly updated documents rapidly. Web crawling methods have been used to continuously collect and manage new documents, whereas existing crawling systems applying a single node demonstrate limited performances. Furthermore, crawlers applying distribution methods exhibit a problem related to effective node management for crawling. This study proposes an efficient distributed crawler through stepwise crawling node allocation, which identifies websites' properties and establishes crawling policies based on the properties identified to collect a large number of documents from multiple websites. The proposed crawler can calculate the number of documents included in a website, compare data collection time and the amount of data collected based on the number of nodes allocated to a specific website by repeatedly visiting the website, and automatically allocate the optimal number of nodes to each website for crawling. An experiment is conducted where the proposed and single-node methods are applied to 12 different websites; the experimental result indicates that the proposed crawler's data collection time decreased significantly compared with that of a single node crawler. This result is obtained because the proposed crawler applied data collection policies according to websites. Besides, it is confirmed that the work rate of the proposed model increased.

An Effective Authentication in Mobile Ad Hoc Networks (Mobile Ad Hoc Networks에서 효과적인 인증서비스)

  • Kim Yoon-Ho
    • The Journal of Society for e-Business Studies
    • /
    • v.10 no.1
    • /
    • pp.121-134
    • /
    • 2005
  • The MANET has many problems in security despite of its many advantages such as supporting the mobility of nodes, independence of the fixed infrastructure, and quick network establishment. In particular, in establishing security, the traditional certification service has many difficult problems in applying to the MANET because of its safety, expandability, and availability. In this paper, a secure and effective distributed certification service method was proposed using the Secret Sharing scheme and the Threshold Digital Signature scheme in providing certification services in the MANET. In the proposed distributed certification service, certain nodes of relatively high safety among the mobile nodes consisting of the MANET, were set as privileged nodes, from which the process of issuing a certification started. The proposed scheme solved problem that the whole network security would be damaged by the intrusion to one node in the Centralized Architecture and the Hierarchical Architecture. And it decreased the risk of the exposure of the personal keys also in the Fully Distributed Architecture as the number of the nodes containing the partial confidential information of personal keys decreased. By the network simulation, the features and availability of the proposed scheme was evaluated and the relation between the system parameters was analyzed.

  • PDF

Implementation of Multicore-Aware Load Balancing on Clusters through Data Distribution in Chapel (클러스터 상에서 다중 코어 인지 부하 균등화를 위한 Chapel 데이터 분산 구현)

  • Gu, Bon-Gen;Carpenter, Patrick;Yu, Weikuan
    • The KIPS Transactions:PartA
    • /
    • v.19A no.3
    • /
    • pp.129-138
    • /
    • 2012
  • In distributed memory architectures like clusters, each node stores a portion of data. How data is distributed across nodes influences the performance of such systems. The data distribution scheme is the strategy to distribute data across nodes and realize parallel data processing. Due to various reasons such as maintenance, scale up, upgrade, etc., the performance of nodes in a cluster can often become non-identical. In such clusters, data distribution without considering performance cannot efficiently distribute data on nodes. In this paper, we propose a new data distribution scheme based on the number of cores in nodes. We use the number of cores as the performance factor. In our data distribution scheme, each node is allocated an amount of data proportional to the number of cores in it. We implement our data distribution scheme using the Chapel language. To show our data distribution is effective in reducing the execution time of parallel applications, we implement Mandelbrot Set and ${\pi}$-Calculation programs with our data distribution scheme, and compare the execution times on a cluster. Based on experimental results on clusters of 8-core and 16-core nodes, we demonstrate that data distribution based on the number of cores can contribute to a reduction in the execution times of parallel programs on clusters.