• Title/Summary/Keyword: Effective Length of Pipe

Search Result 57, Processing Time 0.028 seconds

Fishing Mechanism of Pots and their Modification 5. An Experiment for Modifying the Pot for Conger Eel, Astroconger myriaster (통발어구의 어획기구 및 개량에 관한 연구 5. 붕장어통발의 개량실험)

  • KIM Dae-An;KO Kwan-Soh
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.4
    • /
    • pp.315-322
    • /
    • 1990
  • In order to find out the most favorable shape and structure of pot for conger eel, Astroconger myriaster(Brevoort), the box type, tube type and flat box type of net pots and the pipe type of plastic pot were prepared. Then, the ability of the pots attracting the eel into them were investigated through a tank experiment. The attracting ability was highest in the pipe type without distinction of its length, 50cm and 60cm. In the flat box type, the effective height of pot and the diameter of entrance tip turned out 5cm respectively. But the ability was very poor in the rest pots, especially in the tube type. Thus, the pipe type and flat box type of pots were employed again in a field experiment for comparing their catches with those of the conventional bamboo and plastic pots. In the experiment, the catches were the most in the pipe type and second in the flat box type. But the bamboo and plastic pots both produced comparatively low catches, showing no significant difference between them. It was therefore concluded that the pipe type of pot might be the most favorable one for catching the conger eel.

  • PDF

A Simple Condensation Model on the Vapor Jets in Subcooled Water (과냉각수로 방출되는 증기제트의 응축모델)

  • Kim, Hwan-Yeol;Ha, Kwang-Soon;Bae, Yoon-Yeong;Park, Jong-Kyun;Choi, Sang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.240-245
    • /
    • 2001
  • Phenomena of direct contact condensation (DCC) heat transfer between steam and water are characterized by the transport of heat and mass through a moving steam/water interface. Application of the phenomena of DCC heat transfer to the engineering industries provides some advantageous features in the viewpoint of enhanced heat transfer. This study proposes a simple condensation model on the steam jets discharging into subcooled water from a single horizontal pipe for the prediction of the steam jet shapes. The analysis model was derived from the mass, momentum and energy equations as well as a thermal balance equation with condensing characteristics at the steam/water interface for the axi-symmetric coordinates. The extremely large heat transfer rate at the steam/water interface was reflected in the effective thermal conductivity estimated from the previous experimental results. The analysis results were compared with the experimental ones. The analysis model predicted that the steam jet shape (i. e. radius and length) was increasing as the steam mass flux and the pool temperature were increasing, which was similar in trend to that observed in the experiment.

  • PDF

A Study on Development Potential of Shallow Geothermal Energy as Space Heating and Cooling Sources in Mongolia (몽골의 천부 지열에너지(냉난방 에너지)개발 가능성에 관한 연구)

  • Hahn, Jeong-Sang;Yoon, Yun-Sang;Yoon, Kern-Sin;Lee, Tae-Yul;Kim, Hyong-Soo
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.36-47
    • /
    • 2012
  • Time-series variation of groundwater temperature in Mongolia shows that maximum temperature is occured from end of October to the first of February(winter time) and minimum temperature is observed from end of April to the first of May(summer time). Therefore ground temperature is s a good source for space heating in winter and cooling in summer. Groundwater temperatures monitored from 3 alluvial wells in Ulaabaatar at depth between 20 and 24 m are $(4.43{\pm}0.8)^{\circ}C$ with average of $4.21^{\circ}C$ but mean annual ground temperature(MAGT) at the depth of 100 m in Ulaanbaatar was about $3.5{\sim}6.0^{\circ}C$. Bore hole length required to extract 1 RT's heat energy from ground in heating time and to reject 1 RT's heat energy to ground in summer time are estimated about 130 m and 98 m respectively. But in case that thermally enhanced backfill and U tube pipe placement along the wall are used, the length can be reduced about 25%. Due to low MAGT of Ulaabaatar such as $6^{\circ}C$, the required length of GHX in summer cooling time is less than the one of winter heating time. Mongolia has enough available property, therefore the most cost effective option for supplying a heating energy in winter will be horizontal GHX which absorbs solar energy during summer time. It can supply 1 RT's ground heat energy by 570 m long horizontally installed GHX.

Effects of the Lift Valve Opening Area on Water Hammer Pump Performance and Flow Behavior in the Valve Chamber

  • Saito, Sumio;Dejima, Keita;Takahashi, Masaaki;Hijikata, Gaku;Iwamura, Takuya
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.3
    • /
    • pp.109-116
    • /
    • 2012
  • Water hammer pumps can effectively use the water hammer phenomenon for water pumping. They are capable of providing an effective fluid transport method in regions without a well-developed social infrastructure. The results of experiments examining the effect of the geometric form of water hammer pumps by considering their major dimensions have been reported. However, these conventional studies have not fully evaluated pump performance in terms of pump head and flow rate, common measures of pump performance. The authors have focused on the effects on the pump performance of various geometric form factors in water hammer pumps. The previous study examined how the hydrodynamic characteristics was affected by the inner diameter ratio of the drive and lift pipes and the angle of the drive pipe, basic form factors of water hammer pumps. The previous papers also showed that the behavior of water hammer pump operation could be divided into four characteristic phases. The behavior of temporal changes in valve chamber and air chamber pressures according to the air volume in the air chamber located downstream of the lift valve was also clarified in connection with changes in water hammer pump performance. In addition, the effects on water hammer pump performance of the length of the spring attached to the drain valve and the drain pipe angle, form factors around the drain valve, were examined experimentally. This study focuses on the form of the lift valve, a major component of water hammer pumps, and examines the effects of the size of the lift valve opening area on water hammer pump performance. It also clarifies the behavior of flow in the valve chamber during water hammer pump operation.

Effects of flushing techniques on water quality at extremity with low chlorine residuals in drinking water distribution systems (수질 취약지역 및 관말에서 플러싱 적용 먹는물 수질 개선 효과)

  • Ko, Kyung-Hoon;Kweon, Ji-Hyang;Kim, In-Ja;Lim, Woo-Hyuk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.313-324
    • /
    • 2011
  • Several complaints from consumers on red or turbid waters were often filed at the same places although various efforts were made to improve water quality in the drinking water plant. The red water problems were occurred due to corrosion of main water pipe, especially at extremity. The low concentrations of chlorine indicating poor water quality were detected at the problematic location. To solve the poor water quality at the extremity, flushing techniques, i.e., conventional flushing, unidirectional flushing, and continuous flushing, were recently practiced. In this study, effects of conventional flushing on water qualities were examined by comparing turbidity and residual chlorine before and after flushing. In addition, more detailed analyses on water qualities at the tap water were conducted to learn a reduction pattern during flushing. Five items from geographic information system of water distribution were used to obtain a relationship with water quality, washing duration or amounts of washing water. The flushing was effective to meet the National Drinking Water Quality Standard with simple and relatively short time operation. The key operational parameter in flushing was amounts of washing water which should be estimated based on water quality of the consumer's tap water. The positive relationship between the residual chlorine and pipe length implied that detention time in the pipeline was the main cause of the complaints. More experiments on effectiveness of flushing are needed to determine reasonable strategies of flushing.

Defect Detection of the Wall Thinning Pipe of the Nuclear Power Plant Using Infrared Thermography (적외선열화상을 이용한 원자력발전소 감육 배관의 결함 검출)

  • Kim, Kyeong-Suk;Chang, Ho-Sub;Hong, Dong-Pyo;Park, Chan-Joo;Na, Sung-Won;Kim, Kyung-Su;Jung, Hyun-Chul
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.85-90
    • /
    • 2010
  • The infrared energy is emitted in the infrared wavelength range that corresponds to the surface temperature of a object which has temperature that is over the absolute the temperature(OK). The infrared thermography (IRT) is a non-destrnctive testing method that provides thermal video for the user in real-time by converting the infrared quantity that is detected by the infrared detector into temperature. The pipes of nuclear power plant(NPP) could be thinned by the corrosion and fatigue and the defect could lead to a big accident. For this reason, the effective non-destructive testing method is necessary. In this study, the relationship between the measured temperature and the defect depth or size of NPP pipes were recognized and that was applied to detect the wall thinning defects of NPP pipes.

A study on the single-phase heat transfer in a counter-flow double-pipe heat exchanger by Wilson plot technique (Wilson plot기법을 이용한 2중관식 대향류 열교환기의 단상 열전달에 관한 연구)

  • Ohm, Ki-Chan
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.4
    • /
    • pp.93-100
    • /
    • 2006
  • An experimental study of a counterflow heat exchanger was performed. The heat exchanger had an effective heat transfer length of 1000mm and was operated in a counterflow arrangement with hot water($30{\pm}0.5^{\circ}C$, $Re_i=3500{\sim}20000$) in the inner tube(copper tube, $d_0=9.52mm$) and cold water($15{\pm}0.5^{\circ}C$, $Re_{DH}=10700{\sim}39000$) in the annulus(copper tube, $D_0=19.05mm$). Overall heat transfer coefficients were calculated and heat transfer coefficients in the inner tube and the annulus were determined using Wilson plots. The inner Nusselt number was compared with that of Gnielinski's correlation and they agreed within ${\pm}10%$ error. The trends were typical for a fluid-to-fluid heat exchanger with the overall heat transfer coefficient increasing with both inner and annulus flow rates. In the range of this experiment, Nusselt numbers for the inner tube flow were almost identical with those of the annulus flow at the same Reynolds number.

Evaluation of Weld Defects in Stainless Steel 316L Pipe Using Guided Wave (스테인레스 316L강의 배관용접결함에 대한 유도초음파 특성 평가)

  • Lee, Jin-Kyung;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.1
    • /
    • pp.46-51
    • /
    • 2015
  • Stainless steel is a popular structural materials for liquid-hydrogen storage containers and piping components for transporting high-temperature fluids because of its superior material properties such as high strength and high corrosion resistance at elevated temperatures. In general, tungsten inert gas (TIG) arc welding is used for bonding stainless steel. However, it is often reported that the thermal fatigue cracks or initial defects in stainless steel after welding decreases the reliability of the material. The objective of this paper is to clarify the characteristics of ultrasonic guided wave propagation in relation to a change in the initial crack length in the welding zone of stainless steel. For this purpose, three specimens with different artificial defects of 5 mm, 10 mm, and 20 mm in stainless steel welds were prepared. By considering the thickness of s stainless steel pipe, special attention was given to both the L(0,1) mode and L(0,2) mode in this study. It was clearly found that the L(0,2) mode was more sensitive to defects than the L(0,1) mode. Based on the results of the L(0,1) and L(0,2) mode analyses, the magnitude ratio of the two modes was more effective than studying each mode when evaluating defects near the welded zone of stainless steel because of its linear relationship with the length of the artificial defect.

AN EXPERIMENT TO INDUCE SPAWNING OF CHINESE CARPS BY PITUITARY INJECTION (초어 및 백련의 인공 번식에 관한 연구)

  • Kim In-Bae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.3 no.1
    • /
    • pp.19-26
    • /
    • 1970
  • During the summer of 1969, a series of experiments on the spawning and development of the eggs of grass carp and silver carp was performed with the following results, but the complete development of eggs Iras not accomplished: 1. The season of maturity for both species is estimated to be from the end of June to the beginning of August. 2. Pituitary glands for the use of inducing maturation should be obtained before the maturation season of its donor. 3. Silver carp as small as 40 cm in body length (48 cm in total length) with an age of 6 years were found to have reached maturity, and the number of eggs in the ovaries were from about 23 to 26 thousand for those with body lengths of 40-44.5 cm. 4. The conical-shaped net cloth incubator worked better than others, and each incubator was most effective when installed in parallel series to the water supply pipe with a valve for each incubator to control water flow. 5. During the egg development, if any cell or cells were displaced, the eggs eventually died. 6. The proper manipulation of brood fish before the egg-taking seems to be very Important, and close care should be paid to feeding them well and keeping them in a pond of proper water depth.

  • PDF

A Study on Noise Reduction of Rotary Compressor (공조용 로터리 압축기의 소음 저감에 관한 연구)

  • Ahn, B.H.;Kim, Y.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.3
    • /
    • pp.60-69
    • /
    • 1999
  • The noise and vibration sources of rotary compressor for room air-conditioner are pressure pulsation of compression process, cavity resonance of inner space, structural radiation noise of shell and impact noise of discharge valve. Among them, pressure pulsation is very important noise and vibration source. Because it transferred various kinds of noise and vibration like as mentioned above. In this reason, muffler and resonator are used in order to absorb and remove these noises. But an analytical prediction using acoustic analysis does not coincident with the experimental result. The difference between analysis and actual state is due to the assumption of analysis. This paper covered with new concept of muffler design based on the turbulence kinetic energy of flow by using CFD. From this analysis, it is possible to decide the best position of discharge port of muffler. Therefore $2{\sim}3dB$ noise reduction effect is acquired in rotary compressor of 5000 BTU grade. Also new approach of resonator design is suggested. From this study, the characteristics of resonator and surge hole (a kind of resonator without pipe length) are identified. The former is useful for pure tone noise (narrow frequency band), and the latter is effective for broad frequency band. This paper shows that it is very available to use 3 dimensional analysis of resonator in order to predict more exact tuning frequency. The result is proved by a lot of experiments. From combination of fluid analysis and acoustic analysis, up stream position is effective location of resonator concerning turbulence motion of fluid.

  • PDF