• Title/Summary/Keyword: Effective Friction Coefficient

Search Result 115, Processing Time 0.023 seconds

Evaluation of Scratch Characteristics of Diaphragm for Application of Hydrogen Compressor Parts

  • Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • v.39 no.5
    • /
    • pp.212-215
    • /
    • 2023
  • Diaphragm compressors play a crucial role in safely compressing large volumes of high-purity hydrogen gas without contamination or leakage, thereby ensuring quality and reliability. Diaphragm compressors use a thin, flat, triple-layered diaphragm plate that is subjected to repetitive piston pressure for compression. They are usually made of metallic materials such as stainless steel or Inconel owing to their high-pressure resistance. However, since they are consumable components, they fail due to fatigue from repetitive pressure and vibration stress. This study aims to evaluate the scratch characteristics of diaphragms in operational environments by conducting tests on three different samples: Inconel 718, AISI 301, and Teflon-coated AISI 301. The Inconel 718 sample underwent a polishing process, the AISI 301 sample used raw material, and the Teflon coating was applied to the AISI 301 substrate at a thickness of 50 ㎛. To assess the scratch resistance, reciprocating motion friction tests were performed using a tribometer, utilizing 220 and 2000 grit sandpapers as the counter materials. The results of the friction tests suggested that the Teflon-coated sample exhibited the lowest initial friction coefficient and consistently maintained the lowest average friction coefficient (0.13 and 0.11 with 220 and 2000 grit, respectively) throughout the test. Moreover, the Teflon-coated diaphragm showed minimal wear patterns, indicating superior scratch resistance than the Inconel 718 and AISI 301 samples. These findings suggest that Teflon coatings may offer an effective solution for enhancing scratch resistance in diaphragms, thereby improving compressor performance in high-pressure hydrogen applications.

Shear-Friction Truss Model for Reinforced Concrete Beams (철근콘크리트 보의 전단마찰모델)

  • 홍성걸;하태훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.11a
    • /
    • pp.873-878
    • /
    • 2001
  • This Paper Presents a new model, called the “shear-friction truss model,” for slender reinforced concrete beams to derive a clear and simple equation for their ultimate shear strength. In this model, a portion of the shear strength is provided by shear reinforcement as in the traditional truss model, and the remainder by the shear-friction mechanism. Friction resistance is derived considering both geometrical configuration of the rough crack surface and material Properties. The inclined angle of diagonal strut in the traditional truss model is modified to satisfy the state of balanced failure, when both stirrups and longitudinal reinforcement yield simultaneously. The vertical component of friction resistance is added to the modified truss model to form the shear-friction truss model. Test results from published literatures are used to find the effective coefficient of concrete strength in resisting shear on inclined crack surfaces.

  • PDF

Shaking Table Test of the Model of Five-story Stone Pagoda of Sang-Gye-Sa Mounted on Base Isolation Systems (쌍계사 오층석탑모델에 대한 지진격리효과 진동대실험)

  • 김재관;이원주;김영중;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.331-338
    • /
    • 2001
  • Seismic performances of the base isolated model of Five Story Stone Pagoda were studied through shaking table tests. Friction pendulum system (FPS), Pure-friction system with laminated rubber bearing (LRB) and Ball with rubber bearing were selected fur the comparison of performances. Performances of specially designed isolation systems were tested dynamically using shaking table. The test results of isolated model are compared with those of fixed base model. Compared with fixed base model, the isolated model showed that it could withstand much higer intensity of earthquake motion. The Effective Peak Ground Acceleration (EPGA) value of isolated model when the top component tipped over was above twice of that value in case of fixed base model. According to the additional test results, the lower value of coefficient of friction than that of common frictional base isolation systems is more effective to protect the piled multi-block system of Pagoda against moderate intesity of ground motion.

  • PDF

A study on the characteristics of friction pendulum isolation bearings (마찰진자형 면진베어링의 특성 연구)

  • 김영중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.407-414
    • /
    • 2000
  • The friction pendulum type seismic isolation system (FPS) has been developed to provide a simple and effective way to achieve earthquake resistance for buildings . The major advantages are: the isolation frequency can be easily achieved by designing a curvature of the surface and does not depend on the supported weight of a structure. The function of carrying vertical load is separated to the function of providing horizontal stiffness. Next the friction provides sufficient energy dissipation to protect the structure from earthquake response and resistance to the weak external disturbances such as wind load and ground vibrations due to traffic. In this paper, the friction coefficients are evaluated from number of experiments on the FPS test specimens. The relations between friction coefficient and the test waveform, velocity, and pressure are reviewed and further works are discussed.

  • PDF

Reduction of Tractive Force by Revetment Mattress/Filter (호안 Mattress/Filter에 의한 소류력 저감)

  • Seo Young-Min;Lee Seung-Yun;Heo Chang-Hwan;Jee Hong-Kee
    • Journal of Environmental Science International
    • /
    • v.15 no.1
    • /
    • pp.33-43
    • /
    • 2006
  • Revetment Mattress/Filter is the porous structure filled fillers in meshed structure so that it cail use the fillers of various sizes and form various pores. The porous structure of the Mattress/Filter increases drainage so that it decreases the energy and erosion of flow therefore the tractive force is decreased and the erosion of revetment is mitigated. The filler of Mattress/Filter uses gravels, waste concretes and slags so that the surface is rough and the roughness coefficient increases and the increase of the roughness coefficient decreases flow velocity and tractive force. On the other hand Mattress/Filter and vegetation are combined so that the increase of roughness coefficient and flow velocity still more progress therefore the effect of decrease of tractive force is increased after a few months have passed since the Mattress/Filter is constructed so that the vegetation is developed and be stabilized. The vegetation channel of Mattress/Filter is set tip and the inspection comes into operation by varing flowrate and vegetation spacing to examine these characters of the Mattress/Filter The coefficient of flow velocity U/U*' is decreased exponentially as vegetation esity aH' or $\lambda$ is increased and the coefficient of friction f is increased as vegetation desity aH' is increased but decreased as the coefficient of flow velocity U/U*' is increased. The effective tractive force $F_0$ is decreased exponentially as the vegetation desity aH' is increased. From the inspection the results are obtained that the porous and vegetation structure of the revetment Mattress/Filter system increases the coefficient of friction of revetment so that flow velocity and effective are decreased therefore greatly contributes the stability of the revetment.

A Proposal of Wheel/Rail Contact Model for Friction Control

  • Matsumoto Kosuke;Suda Yoshihiro;Komine Hisanao;Nakai Takuji;Tomeoka Masao;Shimizu Kunihito;Tanimoto Masuhisa;Kishimoto Yasushi;Fujii Takashi
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.spc1
    • /
    • pp.437-443
    • /
    • 2005
  • Controlling the friction between wheel and rail is direct and very effective measures to improve the curving performances of railway trucks, because the curving performances depend much on friction characteristics. Authors have proposed a method, 'friction control', which utilizes friction modifier ($KELTRACK^{TM}$ HPF) with onboard spraying system. With the method, not only friction coefficient, but also friction characteristics can be controlled as expected. In this study, MBD simulation is very valuable tool to foresee the effect of the control in advance of experiment with real car. And the creep characteristics of wheel/rail contact with the friction modifier takes very important role in the simulation. In this paper, authors propose a theoretical model of wheel/rail contact condition considering the creep characteristics of friction modifier, which is derived the application of principle tribological theories.

The study on the 4-dof friction induced self-oscillation system with friction coefficient of velocity and pressure (속도 압력항의 마찰 기인 4 자유도계 시스템의 자려진동에 대한 연구)

  • Joe, Yong-Goo;Shin, Ki-Hong;Lee, Jung-Yun;Oh, Jae-Eung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.255-261
    • /
    • 2002
  • A four-degree of freedom model is suggested to understand the basic dynamical behaviors of the normal interaction between two masses of the friction induced normal vibration system. The two masses may be considered as the pad and the disk of the brake. The phase space analysis is performed to understand complicated in-plane dynamics of the non-linear model. Attractors in the phase space are examined for various conditions of the parameters. In certain conditions, the attractor becomes a limit cycle showing the stick-slip phenomena. In this paper, on the basis of the in-plane motion not only the existence of the limit cycle but also the size of the limit cycle is examined o demonstrate the non-linear dynamics that leads the unstable state and then the normal vibration is investigated as the state of the in-plane motion For only one case of the system frequency(two masses with same natural frequencies), the propensity of the normal vibration is discussed in detail. The results show an important fact that it may be not effective when too much damping is present in the only one part of the masses.

  • PDF

Simulation on Heterogeneous Deformation Behavior of AA1100 During Multi-axial Diagonal Forging Using Finite Element Analysis (유한요소해석을 이용한 다축대각단조 시 AA1100합금의 불균일 변형 거동에 관한 모사)

  • Kim, M.S.;Lee, S.E.;Lee, S.;Jeong, H.T.;Choi, S.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.2
    • /
    • pp.98-104
    • /
    • 2019
  • The present study numerically simulates the deformation heterogeneity developed in AA1100 during multi-axial diagonal forging (MADF) using finite element analysis (FEA). Diagonal forging type consisting of diagonal forging (DF) and return-diagonal forging (R-DF) proved to be relatively beneficial compared to plane forging type which includes plane forging (PF) and return-plane forging (R-PF) for minimizing the non-uniformity of deformation developed in workpieces. Simulation of the effective strain generated in workpieces during the two types of forging was done using 3-D FEA. FEA shows the effect of friction coefficient on the deformation behavior on workpieces. The simulation of 2 types forging with different friction coefficients revealed that the magnitude of barreling effect and strain heterogeneity in workpieces increases with an increase in the friction coefficient.

A cycle simulation of the S.I. engine and it's verification test (S.I. 엔진의 사이클 시뮬레이션 및 이의 확인 실험)

  • 목희수;김승수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.72-84
    • /
    • 1988
  • Engine performance is one of the main objectives specified at the beginning of a new engine design project. The cycle simulation for SI engine is based on the zero-dimensional gas exchange model and a heat release expression by Viebe. This program also requires minimum input data and takes only a short time to run. Heat transfer from cylinder transfer formula. The flow coefficient (effective area) is calculated from valve lift using the standard flow coefficient curve and engine friction is calculated from the Millington and Hartles' engine friction formula. The chemical species considered in burned gas are 6 species CO, CO, H$_{2}$, H$_{2}$O, $O_{2}$, N$_{2}$ and the cylinder pressure, homogeneous cylinder temperature, gas composition and burned fraction are calculated at each crank angle through the cycle. To check the validity and accuracy, experimental study was done with 3 engines for measuring cylinder pressure, indicated mean effective pressure, brake mean effective pressure and air flow rate, etc. Despite its simple assumptions, cycle simulation showes excellent breathing and performance correlation when compared with data of tested engines, and have been proved useful in engine design.

  • PDF

Trolley Adaptability of Membrane Retractable Roof Under Vertical Load Considering Friction of Various Materials (다양한 재료의 마찰계수를 고려한 중소규모 연성 개폐식 트롤리의 수직하중에 대한 적용성 평가)

  • Kim, Yun-Jin;Lee, Seung-Jae;Lee, Yu-Han;Hwang, Kyung-Ju
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.83-89
    • /
    • 2016
  • Middle size of membrane retractable roof is under 25m span which consists of various moving systems. Trolley is the system that leads the membrane to parking place, transferring the load from the membrane to structural cable. When membrane closes roof completely, thus, structural behavior of trolley, which may contain various material with different friction coefficients, should be investigated by vertical load. Nummerical simulation of trolley prototypes, in this research, was performed by incrementation of vertical load. Consequently, this paper studied proper friction characteristics and provided the effective inner materials of trolley.