• 제목/요약/키워드: Effective Buckling Length Factor

검색결과 28건 처리시간 0.02초

무시멘트 콘크리트를 활용한 강판콘크리트 구조의 유효좌굴길이 계수 분석에 관한 연구 (A Study on the Effective Length Factor for Steel Plate-Concrete Structures using Cementless Concrete)

  • 한명환;최병정
    • 한국산학기술학회논문지
    • /
    • 제19권5호
    • /
    • pp.661-671
    • /
    • 2018
  • 강판 콘크리트구조에 대한 국내 연구는 대체적으로 강도가 큰 원전 구조물에 초점을 맞추고 있다. 현재 안전성과 시공성 측면에서 유리한 SC구조는 특수구조물에만 한정되어 적용되어 왔으며, 최근 구조적으로 장점이 명확한 SC구조에 대해 일반건축물에 적용하기 위한 연구가 진행되고 있다. 본 연구에서는 SC 구조를 일반 건축물에 적용하기 위한 기초 연구로서 특히 SC 구조에서 중요한 요소인 콘크리트의 시멘트를 고로슬래그로 대체하여 친환경성에 부합한 구조체를 계획하기 위해 무시멘트 콘크리트를 적용한 SC 구조의 기본 설계 정보를 제시하고자 한다. 이 논문에서는 압축 특성, 중심 압축 하중을 받는 유효좌굴길이계수에 대해 연구하였다. 유효좌굴길이계수를 산정하기 위해서 판 이론을 적용하지 않고 오일러 기둥 이론으로 계산하였다. 유효좌굴길이계수를 계산할 때 필요한 변형률을 측정하여 강판의 항복강도, 강판의 좌굴 및 콘크리트가 파단되는 시점에서의 유효좌굴길이계수를 계산하였다. 또한, 세장비(B/t)를 변수로 최대 압축강도가 국외 및 국내 기준식에 부합하는 지를 검토하였으며 기둥 이론을 적용하여 실험체의 좌굴을 분석하고 측정된 강판의 변형률을 선택하는 방법에 따라 유효좌굴길이계수를 분석하여 기준식에서 제시하는 값과 비교하였다.

New stability equation for columns in unbraced frames

  • Essa, Hesham S.
    • Structural Engineering and Mechanics
    • /
    • 제6권4호
    • /
    • pp.411-425
    • /
    • 1998
  • The effective length factor of a framed column may be determined by means of the alignment chart procedure. This method is based on many unrealistic assumptions, among which is that all columns have the same stiffness parameter, which is dependent on the length, axial load, and moment of inertia of the column. A new approximate method is developed for the determination of effective length factors for columns in unbraced frames. This method takes into account the effects of inelastic column behaviour, far end conditions of the restraining beams and columns, semi-rigid beam-to-column connections, and differentiated stiffness parameters of columns. This method may be implemented on a microcomputer. A numerical study was carried out to demonstrate the extent to which the involved parameters affect the K factor. The beam-to-column connection stiffness, the stiffness parameter of columns, and the far end conditions of restraining members have a significant effect on the K factor of the column under investigation. The developed method is recommended for design purposes.

Effective length factor for columns in braced frames considering axial forces on restraining members

  • Mahini, M.R.;Seyyedian, H.
    • Structural Engineering and Mechanics
    • /
    • 제22권6호
    • /
    • pp.685-700
    • /
    • 2006
  • The effective length factor is a familiar concept for practicing engineers and has long been an approach for column stability evaluations. Neglecting the effects of axial force in the restraining members, in the case of sway prevented frames, is one of the simplifying assumptions which the Alignment Charts, the conventional nomographs for K-Factor determination, are based on. A survey on the problem reveals that the K-Factor of the columns may be significantly affected when the differences in axial forces are taken into account. In this paper a new iterative approach, with high convergence rate, based on the general principles of structural mechanics is developed and the patterns for detection of the critical member are presented and discussed in details. Such facilities are not available in the previously presented methods. A constructive methodology is outlined and the usefulness of the proposed algorithm is illustrated by numerical examples.

Out-of-plane buckling and bracing requirement in double-angle trusses

  • Chen, Shaofan;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • 제3권4호
    • /
    • pp.261-275
    • /
    • 2003
  • Truss members built-up with double angles back-to-back have monosymmetric cross-section and twisting always accompanies flexion upon the onset of buckling about the axis of symmetry. Approximate formulae for calculating the buckling capacity are presented in this paper for routine design purpose. For a member susceptible only to flexural buckling, its optimal cross-section should consist of slender plate elements so as to get larger radius of gyration. But, occurrence of twisting changes the situation owing to the weakness of thin plates in resisting torsion. Criteria for limiting the leg slenderness are discussed herein. Truss web members in compression are usually considered as hinged at both ends for out-of-plane buckling. In case one (or both) end of member is not supported laterally by bracing member, its adjoining members have to provide an elastic support of adequate stiffness in order not to underdesign the member. The stiffness provided by either compression or tension chords in different cases is analyzed, and the effect of initial crookedness of compression chord is taken into account. Formulae are presented to compute the required stiffness of chord member and to determine the effective length factor for inadequately constrained compressive diagonals.

보와 아치의 좌굴강도에 관한 연구의 필요성 (The Need for Research about Buckling Strength of Arch and Beam)

  • 임남형;이진옥;류효진;이우철;구소연
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.223-226
    • /
    • 2007
  • In current specification, modification factor(B) for web-tapered beam is used to account for the stress gradient and the restraining effect for adjacent spans. However, because these effects are considered together in modification factor, this paper revaluate the accuracy of the modification factor used in current specification. Also this paper investigate the flexural torsional buckling strength of laterally fixed thin-walled arch with doubly symmetric section using the analytical and numerical method. From this investigate the concept of effective length to consider the out-of-plane boundary condition for straight column or beam is not applicate for the flexural-torsional buckling of laterally fixed arches.

  • PDF

Stability of structural steel tubular props: An experimental, analytical, and theoretical investigation

  • Zaid A. Al-Sadoon;Samer Barakat;Farid Abed;Aroob Al Ateyat
    • Steel and Composite Structures
    • /
    • 제49권2호
    • /
    • pp.143-159
    • /
    • 2023
  • Recently, the design of scaffolding systems has garnered considerable attention due to the increasing number of scaffold collapses. These incidents arise from the underestimation of imposed loads and the site-specific conditions that restrict the application of lateral restraints in scaffold assemblies. The present study is committed to augmenting the buckling resistance of vertical support members, obviating the need for supplementary lateral restraints. To achieve this objective, experimental and computational analyses were performed to assess the axial load buckling capacity of steel props, composed of two hollow steel pipes that slide into each other for a certain length. Three full-scale steel props with various geometric properties were tested to construct and validate the analytical models. The total unsupported length of the steel props is 6 m, while three pins were installed to tighten the outer and inner pipes in the distance they overlapped. Finite Element (FE) modeling is carried out for the three steel props, and the developed models were verified using the experimental results. Also, theoretical analysis is utilized to verify the FE analysis. Using the FE-verified models, a parametric study is conducted to evaluate the effect of different inserted pipe lengths on the steel props' axial load capacity and lateral displacement. Based on the results, the typical failure mode for the studied steel props is global elastic buckling. Also, the prop's elastic buckling strength is sensitive to the inserted length of the smaller pipe. A threshold of minimum inserted length is one-third of the total length, after which the buckling strength increases. The present study offers a prop with enhanced buckling resistance and introduces an equation for calculating an equivalent effective length factor (k), which can be seamlessly incorporated into Euler's buckling equation, thereby facilitating the determination of the buckling capacity of the enhanced props and providing a pragmatic engineering solution.

Compressive performance with variation of yield strength and width-thickness ratio for steel plate-concrete wall structures

  • Choi, Byong-Jeong;Kim, Won-Ki;Kim, Woo-Bum;Kang, Cheol-Kyu
    • Steel and Composite Structures
    • /
    • 제14권5호
    • /
    • pp.473-491
    • /
    • 2013
  • The primary objectives of this paper are to describe the buckling patterns and to determine the squash load of steel plate-concrete (SC) walls. The major variables in this study were the width-thickness (B/t) ratio and yield strength of surface steel plates. Six SC walls were tested, and the results include the maximum strength, buckling pattern of steel plates, strength of headed studs, and behavior of headed studs. Based on the test results, the effects of the B/t ratio on the compressive strength are also discussed. The paper also presents recommended effective length coefficients and discusses the effects of varying the yield strength of the steel plate, and the effects of headed studs on the performance of SC structures based on the test results and analysis.

케이블지지교량의 좌굴설계를 위한 유효좌굴길이 산정 (Determination of the Accurate Effective Length for Buckling Design of Cable-Supported Bridges)

  • 진만식;경용수;이명재;김문영
    • 한국강구조학회 논문집
    • /
    • 제16권3호통권70호
    • /
    • pp.355-363
    • /
    • 2004
  • 선행연구에서 개발된 개선된 초기형상해석법을 이용하여 케이블지지교량의 초기장력과 보강거더, 주탑의 축방향 압축력을 구하였으며, 이를 이용하여, 케이블 지지교량의 전체 시스템에 대한 좌굴해석을 할 수 있는 프로그램을 개발하였다. 케이블은 트러스요소, 주탑과 보강거더는 보-기둥요소로 모델링하고 대응하는 탄성 및 기하강성행렬을 제시하였다. 초기평형해석을 통하여 얻은 부재력을 이용하여 좌굴파라미터값을 결정하고 이에 대응하는 각 주요부재의 좌굴하중을 산정하고 유효좌굴길이를 구한다. 사장교 및 자정식 현수교에 대하여 결과를 제시하였으며, 결론적으로 이렇게 구한 유효좌굴길이는 축방향력 및 휨모멘트를 동시에 받는 케이블 지지교량의 부재의 안정성 검토에 유용하게 사용될 수 있을 것으로 판단된다.

강프레임 기둥 부재의 탄성 및 비탄성 유효좌굴길이 산정을 위한 가상축력계수의 적용 (Application of a Fictitious Axial Force Factor to Determine Elastic and Inelastic Effective Lengths for Column Members of Steel Frames)

  • 최동호;유훈;이윤석
    • 대한토목학회논문집
    • /
    • 제30권2A호
    • /
    • pp.81-92
    • /
    • 2010
  • 강프레임 부재의 설계에서 탄성 시스템좌굴해석은 프레임의 실제 거동을 예측하기 어려운 반면, 비탄성 시스템좌굴해석은 압축부재의 세장비에 따른 비탄성 거동이 고려됨으로써 보다 현실적인 부재의 좌굴거동을 예측할 수 있다. 그러나 시스템좌굴해석 수행후 오일러좌굴식을 이용한 방법은 압축력이 비교적 작게 발생하는 부재에서 과도한 유효좌굴길이를 산정한다는 문제점을 내포하고 있다. 본 연구에서는 강프레임 구조의 모든 부재의 탄성 및 비탄성 유효좌굴길이계수를 산정할 수 있는 새로운 해석방법을 제안하였다. 제안된 방법은 가상축력계수 개념을 기반으로 비탄성 강도감소계수를 도입하고 반복고유치해석을 수행하여 각 부재의 유효좌굴길이계수를 산정한다. 제안된 방법의 타당성을 검증하기 위하여 예제 강프레임 구조물을 제안된 방법에 의거한 유효좌굴길이와 기존 방법에 의거한 결과를 비교하였다. 검증 결과, 제안된 방법은 강프레임의 모든 부재의 탄성 및 비탄성 유효좌굴길이계수를 합리적으로 산정할 수 있었다. 부가적으로 재료의 비탄성 거동이 부재의 유효좌굴길이에 미치는 영향도 논의되었다.

Lateral torsional buckling of steel I-beams: Effect of initial geometric imperfection

  • Bas, Selcuk
    • Steel and Composite Structures
    • /
    • 제30권5호
    • /
    • pp.483-492
    • /
    • 2019
  • In the current study, the influence of the initial lateral (sweep) shape and the cross-sectional twist imperfection on the lateral torsional buckling (LTB) response of doubly-symmetric steel I-beams was investigated. The material imperfection (residual stress) was not considered. For this objective, standard European IPN 300 beam with different unbraced span was numerically analyzed for three imperfection cases: (i) no sweep and no twist (perfect); (ii) three different shapes of global sweep (half-sine, full-sine and full-parabola between the end supports); and (iii) the combination of three different sweeps with initial sinusoidal twist along the beam. The first comparison was done between the results of numerical analyses (FEM) and both a theoretical solution and the code lateral torsional buckling formulations (EC3 and AISC-LRFD). These results with no imperfection effects were then separately compared with three different shapes of global sweep and the presence of initial twist in these sweep shapes. Besides, the effects of the shapes of initial global sweep and the inclusion of sinusoidal twist on the critical buckling load of the beams were investigated to unveil which parameter was considerably effective on LTB response. The most compatible outcomes for the perfect beams was obtained from the AISC-LRFD formulation; however, the EC-3 formulation estimated the $P_{cr}$ load conservatively. The high difference from the EC-3 formulation was predicted to directly originate from the initial imperfection reduction factor and high safety factor in its formulation. Due to no consideration of geometric imperfection in the AISC-LFRD code solution and the theoretical formulation, the need to develop a practical imperfection reduction factor for AISC-LRFD and theoretical formulation was underlined. Initial imperfections were obtained to be more influential on the buckling load, as the unbraced length of a beam approached to the elastic limit unbraced length ($L_r$). Mode-compatible initial imperfection shapes should be taken into account in the design and analysis stages of the I-beam to properly estimate the geometric imperfection influence on the $P_{cr}$ load. Sweep and sweep-twist imperfections led to 10% and 15% decrease in the $P_{cr}$ load, respectively, thus; well-estimated sweep and twist imperfections should considered in the LTB of doubly-symmetric steel I-beams.