• 제목/요약/키워드: Effect of the Curved Geometry

검색결과 23건 처리시간 0.025초

시뮬레이션에 의한 유체 유동 굴곡파이프의 지지점 변화에 따른 고유 진동수 고찰 (A Simulation for the Natural Frequencies of Curved Pipes Containing Fluid Flow with Various Support Locations)

  • 최명진
    • 한국시뮬레이션학회논문지
    • /
    • 제7권2호
    • /
    • pp.115-123
    • /
    • 1998
  • A simulation is performed to investigate the effect of the pipe supports on the change of the natural frequencies of curved pipe systems containing fluid flow, for different elbow angles and geometry of the pipe systems. Based upon the Hamilton's principle, the equations of motions are derived, and the finite element equation is constructed to solve the corresponding eigenvalue problem. The angles of elbows do not affect the change of the fundamental natural frequency, but affect the change of the third or higher natural frequencies. Without any support, the change of the fundamental natural frequency due to the geometric change is smaller than the change of the second or higher natural frequencies. The more curve parts exist in the pipe system, the less change of lower frequency range, compared with the change of higher frequency range, is observed. Spring supports can be used to reduce the fundamental natural frequency, without change of the second or higher natural frequencies. To avoid resonance, which is critically dangerous from the view point of structural dynamics, the mechanical properties such as stiffness or the location of pipe supports are need to be changed to isolate the natural frequencies from the frequency range of dominant vibration modes.

  • PDF

난류 용탕 In-Situ 합성법을 위한 스태틱 믹서의 형상에 따른 혼합 효과 (Mixing Effect by the Geometry of Static Mixer with Turbulent In-Situ Mixing Process)

  • 이대성;김효근;하만영;박용호;박익민
    • 대한기계학회논문집B
    • /
    • 제29권12호
    • /
    • pp.1307-1312
    • /
    • 2005
  • Turbulent in-situ mixing process is a new material process technology to get dispersed phase in nanometer size by controlling reaction of liquid/liquid, liquid/solid and liquid/gas, flow and solidification speed simultaneously. In this study mixing, the key technology to this synthesis method will be studied by computational fluid dynamics. For the simulation of mixing of liquid metal, static mixers will be investigated. Two inlets for different liquid metal meet and merge like 'Y' shape tube. The tube has various shapes such as straight and curved. Also, the radius of curve will be varied. The performance of mixer will be evaluated with quantitative analysis with coefficient of variance of mass fraction. Also, detailed plots of intersection will be presented to understand effect of mixer shape on mixing.

Compact and Flexible Monopole Antenna for Ultra-Wideband Applications Deploying Fractal Geometry

  • Geetha, G;Palaniswamy, Sandeep Kumar;Alsath, M. Gulam Nabi;Kanagasabai, Malathi;Rao, T. Rama
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.400-405
    • /
    • 2018
  • This paper presents a compact ultra-wideband (UWB) flexible monopole antenna design on a paper substrate. The proposed antenna is made of iterations of a circular slot inside an octagonal metallic patch. This fractal-based geometry has been deployed to achieve compactness along with improved bandwidth, measured reflection coefficient -10 dB bandwidth ranging from 2.7 to 15.8 GHz. The overall size of the antenna is $26mm{\times}19mm{\times}0.5mm$, which makes it a compact one. The substrate used is paper and the main features like environment friendly, flexibility, green electronics applications and low cost of fabrication are the key factors for the proposed antenna. The aforementioned UWB prototype is suitable for many wireless communication systems such as WiMAX, WiFi, RFID and WSN applications. Antenna has been tested for the effect of bending by placing it over a curved surface of a very small radius of 10 mm.

CCHE2D모형을 이용한 급만곡부의 흐름특성 분석 (Investigation of Flow Characteristics of Sharply Curved Channels by Using CCHE2D Model)

  • 김연수;장창래;이기하;정관수
    • 한국방재학회 논문집
    • /
    • 제10권5호
    • /
    • pp.125-133
    • /
    • 2010
  • 일반적으로 사행하천의 만곡부에서는 홍수시 월류의 위험성이 높을 뿐만 아니라, 국부적으로 집중되는 흐름분포는 제방의 안정성을 위협한다. 따라서 본 연구는 두 개의 다른 실험수로에 대한 CCHE2D모형의 적용성 검토와 급변만곡의 형태를 갖는 자연하천의 흐름특성분석을 수행하는데 그 목적이 있다. 모의결과 실험에 대한 수위의 백분율 오차는 4.9%이내였으며, 실측치와 근사한 유속분포를 보였다. 실험수로를 통하여 보정된 모형을 이용하여 용담댐 하류 대유리에 위치한 만곡부를 대상으로 흐름특성 분석을 수행하였다. 모의결과는 만곡부의 지형에 의한 영향을 고려하지 못하는 HEC-RAS모형에 비하여 상류부에서 수위가 1.5 m 정도 높게 나타났다. 그러나 모의결과를 기존의 경험식과 비교한 결과 CCHE2D모형이 편수위 모의에 적합함을 알 수 있었으며, 자연하천의 홍수위와 유속산정에도 적합함을 확인할 수 있었다.

배연탈황설비 덕트쿨러에서의 유동균일화에 관한 연구 (A study on a uniformity of flow field in a duct cooler of FGD system)

  • 배진효;김광추;박만흥;박경석;이종원
    • 설비공학논문집
    • /
    • 제12권2호
    • /
    • pp.120-130
    • /
    • 2000
  • A flow uniformity in a duct cooler of duct system of FGD(Flue Gas Desulfurization) linking a reheater and a absorber has been investigated in the present study. For this purpose, the flow characteristics according to the geometry of a vertical and horizontal vane in a curved duct of the duct system has been examined with the aid of a numerical simulation. The results indicate that the vertical vane with a little deflection toward a recirculation region makes the flow distribution in the duct cooler more uniform than that without deflection, and horizontal vane does not effect the change of the flow distribution for an angle of inclination. The mean flow uniform factor shows its maximum for duct system without the vane(case NP) and its minimum for the vertical vane with a little deflection(case P-0.8-0) .

  • PDF

와이어 직조 카고메 다공질 금속을 심재로 갖는 샌드위치 판재의 최적 설계 (An Optimal Design of Sandwich Panels with Wire-woven Bulk Kagome Cores)

  • 이용현;강기주
    • 대한기계학회논문집A
    • /
    • 제32권9호
    • /
    • pp.782-787
    • /
    • 2008
  • First, the effect of the geometry such as the curved shape of the struts composing the truss structure of WBK is elaborated. Then, analytic solutions for the material properties of WBK and the maximum loads of a WBK-cored sandwich panel under bending are derived. A design optimization with the face sheet thickness and the core height selected as the design variables is presented for given slenderness ratios of the WBK core. Unless the face sheet thickness is limited, the optimal design to give the maximum load per weight is always found at a confluence of three failure modes, namely, face sheet yielding, indentation plastic, and core shear modeB plastic.

Finite element vibration analysis of laminated composite parabolic thick plate frames

  • Das, Oguzhan;Ozturk, Hasan;Gonenli, Can
    • Steel and Composite Structures
    • /
    • 제35권1호
    • /
    • pp.43-59
    • /
    • 2020
  • In this study, free vibration analysis of laminated composite parabolic thick plate frames by using finite element method is introduced. Governing equations of an eigenvalue problem are obtained from First Order Shear Deformation Theory (FSDT). Finite element method is employed to obtain natural frequency values from the governing differential equations. The frames consist of two flat square plates and one singly curved plate. Parameters like radii of curvature, aspect ratio, ply orientation and boundary conditions are investigated to understand their effect on dynamic behavior of such a structure. In addition, multi-bay structures of such geometry with different stacking order are also taken into account. The composite frame structures are also modeled and simulated via ANSYS to verify the accuracy of the present study.

Brazilian Test of Concrete Specimens Subjected to Different Loading Geometries: Review and New Insights

  • Garcia, Victor J.;Marquez, Carmen O.;Zuniga-Suarez, Alonso R.;Zuniga-Torres, Berenice C.;Villalta-Granda, Luis J.
    • International Journal of Concrete Structures and Materials
    • /
    • 제11권2호
    • /
    • pp.343-363
    • /
    • 2017
  • The objective of this work was finding out the most advisable testing conditions for an effective and robust characterization of the tensile strength (TS) of concrete disks. The independent variables were the loading geometry, the angle subtended by the contact area, disk diameter and thickness, maximum aggregate size, and the sample compression strength (CS). The effect of the independent variables was studied in a three groups of experiments using a factorial design with two levels and four factors. The likeliest location where failure beginning was calculated using the equations that account for the stress-strain field developed within the disk. The theoretical outcome shows that for failure beginning at the geometric center of the sample, it is necessary for the contact angle in the loading setup to be larger than or equal to a threshold value. Nevertheless, the measured indirect tensile strength must be adjusted to get a close estimate of the uniaxial TS of the material. The correction depends on the loading geometry, and we got their mathematical expression and cross-validated them with the reported in the literature. The experimental results show that a loading geometry with a curved contact area, uniform load distribution over the contact area, loads projected parallel to one another within the disk, and a contact angle bigger of $12^{\circ}$ is the most advisable and robust setup for implementation of BT on concrete disks. This work provides a description of the BT carries on concrete disks and put forward a characterization technique to study costly samples of cement based material that have been enabled to display new and improved properties with nanomaterials.

Application of machine learning and deep neural network for wave propagation in lung cancer cell

  • Xing, Lumin;Liu, Wenjian;Li, Xin;Wang, Han;Jiang, Zhiming;Wang, Lingling
    • Advances in nano research
    • /
    • 제13권3호
    • /
    • pp.297-312
    • /
    • 2022
  • Coughing and breath shortness are common symptoms of nano (small) cell lung cancer. Smoking is main factor in causing such cancers. The cancer cells form on the soft tissues of lung. Deformation behavior and wave vibration of lung affected when cancer cells exist. Therefore, in the current work, phase velocity behavior of the small cell lung cancer as a main part of the body via an exact size-dependent theory is presented. Regarding this problem, displacement fields of small cell lung cancer are obtained using first-order shear deformation theory with five parameters. Besides, the size-dependent small cell lung cancer is modeled via nonlocal stress/strain gradient theory (NSGT). An analytical method is applied for solving the governing equations of the small cell lung cancer structure. The novelty of the current study is the consideration of the five-parameter of displacement for curved panel, and porosity as well as NSGT are employed and solved using the analytical method. For more verification, the outcomes of this reports are compared with the predictions of deep neural network (DNN) with adaptive optimization method. A thorough parametric investigation is conducted on the effect of NSGT parameters, porosity and geometry on the phase velocity behavior of the small cell lung cancer structure.

파올로 포르토게시 건축에 나타난 바로크적 특성 연구 (A Study on the characteristics of baroque in Architecture of Paolo Portogheshi)

  • 한명식
    • 한국실내디자인학회논문집
    • /
    • 제18권6호
    • /
    • pp.52-59
    • /
    • 2009
  • In the study will look into how Baroque concepts are expressed in architectural space by analyzing the concepts of Baroque formative vocabularies applied in his architecture through a Spanish architect Paolo Portoghesi. Baroque is regarded as the philosophical thought that means enlargement toward diversity of a firm and fixed trend beyond the concept of a certain epochal form of 16th and 17th century architecture. In addition, it is from the free attitude and the intelligent and formal stereotype, and signifies common conditions more than one style in architecture history. Paolo Portoghesi proposes to express gestalt approach by Baroque precedent in his architecture through plasticity and geometric collision technique. Here, the expression of plasticity means the effect that gives formative rhythm to Baroque curved structures. That is the method to expand the formative possibility by changing various materials such as bricks, concrete, and timbers. Second, the geometric collision technique is the technique to constitute the flat form of overall space through the juxtaposition technique, Baroque symmetrical and homogeneous geometric manipulation technique. Accordingly, this study will overcome Inlimitation of formative monotony and expression of abstraction that modernism architecture has, and examine formative waste and conflicts which may be derived from impractical architectural languages of the concept of excessive disorder or the minimum form. This discussion is considered as the first step to tune balance between productivity and formativeness in modern architecture.