• Title/Summary/Keyword: Effect of excavation

Search Result 414, Processing Time 0.025 seconds

Hydro-mechanical Behavior of a Circular Opening Excavated in Saturated Rockmass (포화된 암반에 굴착된 원형공동의 수리-역학적 거동)

  • Lee Youn-Kyou;Shin Hee-Soon
    • Explosives and Blasting
    • /
    • v.23 no.2
    • /
    • pp.23-35
    • /
    • 2005
  • Excavation of an opening in a saturated porous rock may lead to the development of pore pressure around the opening due to the redistribution of initial rock stresses. The built-up of pore pressure, in turn, may affect the mechanical behavior of rock mass and give the different pattern of stress distribution around the opening from that of the case where the coupling is neglected. In this study, the short time response of an opening excavated in saturated ground under anisotropic initial stress conditions was investigated numerically. Not on the wall of opening but at a short distance from the wall, the tangential stresses were peak during the short period after excavation when the hydro-mechanical coupling is considered.

Tunnel Safety Diagnosis in Near-excavation by In-depth Inspection of Tunnel (기존터널 안전진단 결과를 통한 근접시공 시 터널 안정성 평가)

  • Kim, Seok-Jae;Kim, Min-Seok;Kim, Jun-Chul;Yoo, Young-Il;Oh, Joung-Bae;Oh, Sae-Joon
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.347-356
    • /
    • 2006
  • We analyzed case studies doing in-depth inspection of tunnel to maintain safety of existing tunnel in constructing new tunnel near to a existing tunnel with single track. Futhermore, We accomplished in-depth inspection of existing tunnel and numerical analysis. We suggested remedies to security safety of existing tunnel. We applied line drilling and pre-large hole boring method not to have an effect on existing tunnel and convinced the safety of existing tunnel from blast-vibration and blast-noise of numerical analysis. We planed to install basset system to measure displacement of existing tunnel according to excavating new tunnel.

Analysis of Soil Bailed Wall under Piled Bridge Abutment (교대하부 도로확장에 적용된 쏘일네일 벽체의 해석)

  • Im, Yu-Jin
    • The Journal of Engineering Research
    • /
    • v.6 no.1
    • /
    • pp.83-96
    • /
    • 2004
  • A soil mailed wall is adapted as road widening measure and is constructed under a miniature abutment built on steel pipe piles. The soil nailed wall called for removal of the existing embankment slope to permanently retain the fill behind the abutment. The soil nailed wall is fully instrumented and is monitored. A 3D finite element analysis is used to study further the behavior of the soil nailed wall. The complete sequence of construction is simulated. The numerical model is calibrated against the instrumented nailed wall. Then a parametric study is conducted. The results provide valuable information related to the effect of the excavation and nailing on the following: axial load and bending moment in the piles, load in the nails, and wall deflections.

  • PDF

A Comparison of Ground Vibration in Center Cut Blasting using Artificial Joints (인공절리를 이용한 심발 발파에서의 지반진동 비교)

  • Park, Hoon;Suk, Chul-Gi;Noh, You-Song
    • Explosives and Blasting
    • /
    • v.36 no.4
    • /
    • pp.16-25
    • /
    • 2018
  • In order to reduce ground vibration during tunnel excavation, a free surface blasting method has been applied in which a partial free surface is formed on the excavation surface and controlled blasting is performed. In this study, the ground vibration reduction due to artificial joints was evaluated by forming artificial joints on center cut using diamond wire saw and comparing the ground vibration caused by center cut blasting. As a result of comparison, ground vibration was reduced by artificial joints center cut blasting more than normal center cut blasting, and the ground vibration reduction effect of horizontal artificial joints center cut blasting was evaluated more than that of vertical artificial joint center cut blasting.

A study on the prediction of tunnel crown and surface settlement in tunneling as a function of deformation modulus and overburden

  • Kim Seon-Hong;Moon Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.129-141
    • /
    • 2003
  • The precise prediction of ground displacement plays an important role in planning and constructing tunnels. In this study, an equation for predicting the surface and crown settlement is suggested by examining the theories of ground movement caused by tunnel excavation. From the 3D numerical modeling, the reinforcement effect of UAM (Umbrella Arch Method) is quantitatively analyzed with respect to deformation modulus and overburden. By using a regression technique for the numerical results, an equation for predicting the settlement is suggested.

  • PDF

A Study on the Effect of Blasting Vibration on the road (터널발파 진동이 도로상부에 미치는 영향 분석)

  • Kim, Nagyoung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.821-822
    • /
    • 2014
  • When performing the tunnel excavation blasting, the lower road structure can cause the damage of the structure caused by blasting vibration. In this case the existing structurel meet all of the static and the dynamic stability. But in the domestic management of building structures is presented vibration and is the only criteria, and the criteria for major civil engineering structures insufficient research situation. This study examined the influence of the road structure according to the blast vibration by utilizing the numerical analysis.

  • PDF

A numerical study on the behavior of existing and enlarged tunnels when widened by applying the pre-cutting method (Pre-cutting 공법을 적용한 터널 확폭 시 기존 및 확폭터널의 거동에 관한 수치해석적 연구)

  • Kim, Han-Eol;Nam, Kyoung-Min;Ha, Sang-Gui;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.4
    • /
    • pp.451-468
    • /
    • 2020
  • Aging tunnels with small cross-sections can cause chronic traffic jams. This problem can be solved by widening the tunnel. In general, when the tunnel is expanded, the outer portion of the existing tunnel is excavated through a mechanical or blasting method. Such excavation affects not only the surrounding ground but also the existing tunnel. The application of the pre-cutting method can be a solution to these problems effectively. Therefore, if the widening of tunnel is performed by applying pre-cutting method, analysis of the impact of this method must be performed. In this study, in order to analyze the effect of applying pre-cutting in tunnel widening, numerical analysis is performed at six ground grades, from grade I to weathered rock. The analysis is performed with the expanding lane and the excavation length of pre-cutting as variables. In addition, the analysis is focused on the displacement of crown of the existing tunnel and the enlarged tunnel. As a result, the crown displacement of the enlarged tunnel is confirmed to converge at the same value regardless of the excavation length of the pre-cutting when the tunnel widening is completed. In the case of existing tunnels, uplift of crown occurs within 5 m of the front of the tunnel surface, and the shorter the excavation length of pre-cutting is found to be effective in preventing the occurrence of uplift.

Lateral Earth Pressures Acting on Anchored Diaphragm Walls and Deformation Behavior of Walls during Excavation (지하굴착시 앵커지지 지중연속벽에 작용하는 측방토압 및 벽체의 변형거동)

  • Hong, Won-Pyo;Lee, Moon-Ku;Lee, Jae-Ho;Yun, Jung-Mann
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.5
    • /
    • pp.77-88
    • /
    • 2007
  • Lateral earth pressure and horizontal displacement of the diaphragm walls constructed in multi-soil layers were analyzed by the field instrumentation from six building construction sites in urban area. The distribution of the developed earth pressure of the anchored diaphragm walls during excavation shows approximately a trapezoid diagram. The maximum earth pressure of anchored diaphragm walls corresponds to $0.45{\gamma}H$ and the earth pressure acts at the upper part of the walls. The maximum earth pressure is two times larger than the empirical earth pressure of flexible walls in sands suggested by Terzaghi and Peck(1967), Tschebotarioff(1973), and Hong and Yun(1995a). The horizontal displacement of diaphragm walls is closely related with supporting systems such as struts, anchors, and so on. The horizontal displacement of anchored walls shows less than 0.1 percent of the excavated depth, and the horizontal displacement of strutted walls shows less than 0.25 percent of the excavated depth. Therefore, the restraining effect of horizontal displacement to the anchored diaphragm walls is larger than the strutted diaphragm walls. In addition, since the horizontal displacement of the diaphragm walls is lower than the criterion, $\delta=0.25%H$, used for control the anchored retention wall using soilder piles, the safety of excavation sites applied with the diaphragm walls is pretty excellent.

Study on EPB TBM performance by conducting lab-scaled excavation tests with different foam injection for artificial sand (실내 굴진 시험을 통한 폼 주입 조건에 따른 인공 사질토 지반에서 EPB TBM 굴진성능에 대한 고찰)

  • Lee, Hyobum;Shin, Dahan;Kim, Dae-Young;Shin, Young Jin;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.545-560
    • /
    • 2019
  • During EPB TBM tunnelling, an appropriate application of additives such as foam and polymer is an essential factor to secure the stability of TBM as well as tunnelling performance. From the '90s, there have been many studies on the optimal injection of additives worldwidely contrary to the domestic situation. Therefore, in this paper, the foam, which is widely adopted for soil conditioning, was selected as an additive in order to investigate the effect of foam injection on TBM performance through a series of laboratory excavation tests. The excavation experiments were carried out on artificial sandy soil specimens with consideration of the variance of FIR (Foam Injection Ratio), FER (Foam Expansion Ratio) and $C_f$ (Surfactant Concentration), which indicate the amount and quality of the foam. During the tests, torque values were measured, and the workability of conditioned soil was evaluated by comparing the slump values of muck after each experiment. In addition, a weight loss of the replaceable aluminum cutter bits installed on the blade was measured to estimate the degree of abrasion. Finally, the foam injection ratio for the optimal TBM excavation for the typical soil specimen was determined by comparing the measured torque, slump value and abrasion. Note that the foam injection conditions satisfying the appropriate level of machine load, mechanical wear and workability are essential in the EPB TBM operational design.

Development of Uneven Excavation Method for Reinforcement of Ground Slope (사면보강을 위한 요철형 암반굴착 공법개발)

  • Kim, Hyun-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.259-266
    • /
    • 2020
  • In this study, required drill bits and excavation methods were developed for an uneven drilling method that can solve the problem of performance degradation of rock bolts. The developed drill bit's excavation performance was verified using rock with a strength of 100 MPa or more. In addition, for the relative evaluation of the uneven excavation method, experimental specimens were prepared for models with and without irregularities, and tests were performed. As a result of the experiment, the model with unevenness exhibited an average critical draw resistance of 801.6 kN, which is about 1.7 times the value of 468.7 kN for the model without unevenness, thus confirming the effect sufficiently. Therefore, it is expected that the resistance performance will significantly increase despite an increase in the uneven hole diameter of 20 mm. In the future, the results of this study could be used as basic data when performing other studies using numerical analysis models and performance verification through experiments to obtain an optimized rock forming method.