• Title/Summary/Keyword: Effect of Moisture Absorption

Search Result 176, Processing Time 0.021 seconds

Hygrothermal and Impact Damage Evaluation of CFRP Hat shaped sectional members with Stacking Angle Variation (적층각도 변화를 갖는 CFRP 모자형 단면부재의 열습 및 충격손상 평가)

  • Yang, Yong-Jun;Sim, Jae-Ki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.782-789
    • /
    • 2010
  • It is important to satisfy the requirements and standards for the protections of passengers in a car accident. There are lots of studies on the crushing energy absorption of a structure member in automobiles. In this paper, we have studied to investigate collapse characteristics and moisture absorption movements of CFRP( carbon fiber reinforced plastics) structure members when CFRP laminates are under the hygrothermal environment. In particular, the absorbed energy, mean collapse load and deformation mode were analyzed for CFRP members which absorbed most of the collision energy. Also, variation of stacking angle is important to increase the energy absorption capability. The purpose of this study is to evaluate the strength reduction and moisture absorption behavior of CFRP hat shaped member. Therefore we have made a impact collapse experiment to research into the difference of absorbed energy and deformation mode between moisture absorbed specimen and non-moisture absorbed. As a result, the effect of moisture absorption and impact loads of approximately 50% reduction in strength are shown.

Effect of Moisture Absorption on the Compressive and the Bending Residual Strength in Fiber-Reinforced Polymeric Composites (흡습효과가 섬유강화 고분자 복합재료의 압축 ${\cdot}$ 굽힘 잔류강도에 미치는 영향)

  • Kim, Hyuk;Han, Gil-Young;Lee, Dong-Gi;Kim, E-Gon;Kim, Ki-Sung
    • Journal of Ocean Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.133-140
    • /
    • 1995
  • This paper deals with the residual strength characteristics of composite materials under the environment of high temperature and humidity. Two types of GFRP, one with unidirection and randomly oriented, are used to investigate the features of moisture absorption and the residual strength. The results show that, when exposed longterms in high temperature and humidity, the randomly oriented composites is more stable than the unidirection one.

  • PDF

Moisture Absorption Behavior of CNT Reinforced Unsaturated Polyester Composites (CNT 강화 불포화 폴리에스터 복합재료의 수분흡수 거동에 관한 연구)

  • Park, Ji-Hye;Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.536-538
    • /
    • 2011
  • In this study, the moisture absorption behaviors of the CNT reinforced unsaturated polyester composites were investigated along with exposure temperature and time. The tensile properties of the specimens were evaluated to identify the effect of absorbed moisture on the mechanical properties. The exposure temperatures of $25^{\circ}C$ and $75^{\circ}C$ were considered and the exposure time up to 600 hours was applied. According to the results, moisture absorption rate was increased as CNT content and exposure temperature were increased. The rate of decrease in tensile strength of the CNT reinforced unsaturated polyester composites was reduced due to the reinforcing effect of CNT compared to the unsaturated polyester resin.

  • PDF

Effect of Moisture Absorption on the Shear Strength of Fiber-reinforced Composites (섬유강화 복합재료의 전단강도에 미치는 흡습의 영향)

  • Kim, Yun-Hae;Kim, Kook-Jin;Han, Joong-Won;Jo, Young-Dae;Bae, Sung-Youl;Moon, Kyoung-Man;Kim, Dong-Hun
    • Composites Research
    • /
    • v.21 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • Composite materials are currently used in aero-space industry, sport and leisure industry but it has many problems such as mechanical properties deterioration by moisture absorption. In this study, we appraised interlaminar shear strength with specimen that immersed/ immersed-dried in water environment(distilled/sea) during $100{\sim}200$days. In the result, properties degradation of resin part and silan part by moisture absorption is judged early on main cause of interlaminar shear strength, and later destruction of mechanical bonding between silan part and fiber by moisture absorption is Judged later main cause of interlaminar shear strength. In conclusion, the recovery of interlaminar shear strength is judged to difficult due to interfacial destruction by moisture when pass over irreversible by moisture in composite material.

Hygrothermal effect on the moisture absorption in composite laminates with transverse cracks and delamination

  • Kesba, Mohamed Khodjet;Benkhedda, A.;Adda bedia, E.A.;Boukert, B.
    • Advances in aircraft and spacecraft science
    • /
    • v.6 no.4
    • /
    • pp.315-331
    • /
    • 2019
  • The stiffness degradation of the cross-ply composite laminates containing a transverse cracking and delamination in $90^{\circ}$ layer is predicted by using a modified shear-lag model by introducing the stress perturbation function. The prediction shows better agreement with the experimental results published by Ogihara and Takeda 1995, especially for laminates with thicker $90^{\circ}$ plies in which extensive delamination occurs. A homogenised analytic model for average transient moisture uptake in composite laminates containing periodically distributed matrix cracks and delamination is presented. It is shown that the model well describes the moisture absorption in a cross-ply composite laminate containing periodically distributed transverse matrix cracks in the $90^{\circ}$ plies. The obtained results represent well the dependence of the stiffness degradation on the crack density, thickness ratio and moisture absorption. The present study has proved to be important to the understanding of the degradation of the material propertiesin the failure process when the laminates in which the delamination grows extensively.

Effect of Moisture Absorption on Dielectric Breakdown Phenomena of DGEBA/MDA/SN/Natural Zeolite System (DGEBA/MDA/SN/천연 제올라이트계의 절연파괴현상에 미쳐는 흡습의 영향)

  • Kim, You-Jeong;Lee, Hong-Ki;Kim, Sang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.994-996
    • /
    • 1999
  • Hygrothermal aging at the elevated temperature induces the long-term degradation of the epoxy resin. We investigated the effects of hydrothermal stress on the dielectric breakdown phenomena of epoxy composite filled with natural zeolite. The cured specimens absorbed the moisture in the autoclave at $120^{\circ}C$. $T_g$ of the deteriorated composite by moisture absorption decreased. The dielectric breakdown strength decreased with the moisture absorption cycle. It was concluded that the thermal stress and the high water-vapour-pressure deteriorated the natural zeolite filled epoxy resin system, consequently and the tree growth rate increased.

  • PDF

The Effect of Hygrothermal Aging on the Properties of Epoxy Resin

  • Wang, Youyuan;Liu, Yu;Xiao, Kun;Wang, Can;Zhang, Zhanxi
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.892-901
    • /
    • 2018
  • Because of excellent electrical properties, epoxy resin is widely used in packaging and casting power equipment. Moisture and temperature in the environment are inclined to seriously affect the insulation tolerance of epoxy resin. This work focuses on the aging characteristics of epoxy resin in hygrothermal environment. Scanning electron microscopy images show that there are micro-crack, micro-slit and holes inside aged samples. The moisture absorption process undergoes three equilibrium stages and it does not follow the Fick's second law. Observing the change of hydrogen bonds in the infrared spectra of the dried samples, it is found that chemically moisture absorption immerges when the physical moisture absorption entered the third equilibrium stage. By Debye equation to fit the imaginary part of the dielectric constant, it is concluded that the uniformity of water molecule has a great influence on the electrical conductivity loss. Furthermore, the polarization loss can be more easily affected by water molecules than small free molecules. After the aged samples being dried, their real and imaginary part of the dielectric constant descend, but their original electrical properties cannot completely restored. After chemical moisture absorption appears inside the material, the residual space charges increase significantly and the charge dissipation rate slow down obviously.

The Effect of Fiber Type, Compressional Resilience and Moisture Transport Properties of Fiber on the Heat Transfer of Insulating Nonwovens (섬유의 종류와 압축특성 및 수분전달특성이 보온용 부직포의 열전달에 미치는 영향)

  • 김희숙;김은애
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.4
    • /
    • pp.647-654
    • /
    • 1996
  • The purpose of this study was to analyze the effect of fiber type, compressional resilience and moisture transport properties of wool and polyester fiber on the heat transfer of insulation nonwovens. The results obtained were as follows: 1) Overall heat transfer of wool nonwoven was slightly higher than that of polyester nonwovens. Warmability of wool nonwoven was lower than that of polyester nonwovens. The radiative heat transfer was in the range of 11~18% of overall heat transfer in polyester nonwovens and 25% in wool nonwoven. 2) As wool nonwoven compressed, overall heat transfer was increased by increasing radiative heat transfer and wamability was decreased due to the poor compressional resilience. 3) Increasing rate of heat transfer by moisture absorption in wool nonwoven was lower than that of polyester nonwovens. Thickness and compressional resilience of wool nonwoven were reduced extremely by moisture absorption.

  • PDF

Effect of Water Environment on the Mechanical Properties of Unidirectional CFRP (일방향 탄소섬유강화 복합재료의 기계적 성질에 미치는 수 환경의 영향)

  • 손선영;김재동;고성위
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.23-30
    • /
    • 1997
  • The purpose of this paper is to investigate the water environmental effect on the mechanical properties of carbon fiber/epoxy composites. Moisture concentration absorbed in CFRP under various water environment was calculated and degradation of mechanical properties for each wet composite laminates is investigated by performing the flexual and tensile test. The results show that moisture absorption is accelerated in higher temperature environment and under the same temperature sea water environment prompts more absorption than fresh water. As increasing the water temperature and moisture concentration tensile and flexual strength decreased as much as 25%-40% compared with dry condition.

  • PDF

Development of Automatic Rewetting System for Rough Rice Stored in Round Steel Bin with Stirring Device -Adsorption characteristics of rough rice- (원형철제빈용 벼 자동흡습장치 개발에 관한 연구(I) -벼의 흡습특성-)

  • Kim, J. Y.;Keum, D. H.;Kim, H.;Park, S. H.
    • Journal of Biosystems Engineering
    • /
    • v.26 no.5
    • /
    • pp.469-474
    • /
    • 2001
  • Milling the rice with low moisture requires more energy, produces more cracked rice, and results in reducing taste of cooked rice. Accordingly, it is necessary to add moisture to the rice with low moisture to obtain optimum moisture level for milling and taste of rice. This study was performed to evaluate the influence of initial moisture content and absorption rate on rice crack, milling energy and whiteness of milled rice and to obtain the information for design of rewetting system mounted on stirring device in grain bin. The tests were conducted for the four levels of initial moisture content in the range of 11.4 to 14.5%(w.b.) and six levels of absorption rate in the range of 0.04 to 1.0%, w.b./hr. In the case of lower moisture content below 12%(w.b.), crack ratios of brown rice were remarkably high regardless of initial moisture contents. Therefore, it was found that rough rice below 12%(w.b.) in initial moisture content could not rewetted by spraying water without crack generation of low level. Absorption rate must be below 0.3%, w.b./hr to maintain crack ratio increase of less than 1% regardless of initial moisture contents. In the case of allowable crack ratio increase of 2% and 5%, it was found that the maximum absorprion rate was respectively 0.6%, w.b./hr and 1.0%, w.b./hr in the initial moisture content of above 13.5%(w.b.). Rewetting the rough rice in moisture content of 11.4 to 14.5%(w.b.) to 14.3 to 16.9%(w.b.) decreased milling energy consumption by 15.9 to 22.3%. The effect of energy saving was higher in the samples of higher initial moisture content. Whiteness of milled rice was decreased by 0.5 to 1.5.

  • PDF