• Title/Summary/Keyword: Effect of Flow Rate Variation

Search Result 213, Processing Time 0.023 seconds

Numerical simulation of jet flow impinging on a shielded Hartmann whistle

  • Michael, Edin;Narayanan, S.;Jaleel. H, Abdul
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.123-136
    • /
    • 2015
  • The present study numerically investigates the effect of shield on the flow characteristics of Hartmann whistle. The flow characteristics of un-shielded Hartmann whistle are compared with whistles of different shield heights 15 mm, 17 mm, 20 mm, 25 mm and 30 mm. The comparison of Mach number contours and transient velocity vectors of shielded Hartmann whistles with un-shielded ones for the same conditions reveal that the presence of shield causes the exiting jet to stick to the wall of the shield without causing spill-over around the cavity inlet, thus sustaining the shock oscillation as seen in the unshielded Hartmann whistle, which has intense flow/shock oscillation and spill-over around the cavity mouth. The velocity vectors indicate jet regurgitance in shielded whistles showing inflow and outflow phases like un-shielded ones with different regurgitant phases. The sinusoidal variation of mass flow rate at the cavity inlet in un-shielded Hartmann whistle indicates jet regurgitance as the primary operating mode with large flow diversion around the cavity mouth whereas the non-sinusoidal behavior in shielded ones represent that the jet regurgitance is not the dominant operating mode. Thus, this paper sufficiently demonstrates the effect of shield in modifying the flow/shock oscillations in the vicinity of the cavity mouth.

Effect of the Suction Air Temperature on the Performance of a Positive Displacement Air Compressor (흡입공기 온도에 의한 용적형 공기 압축기 성능 변화)

  • Jang, Ji-Seong;Han, Seoung-Hun;Ji, Sang-Won
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.89-94
    • /
    • 2017
  • Pneumatic systems are widely applied in various industry because it have a many advantage(low cost, high safety, etc.). Air compressors supply the working fluid to the pneumatic systems and consume a lot of electrical energy at the manufacturing site. The one of the suggested idea is to reduce the energy consumption by reducing the suction temperature of the air compressor and increasing the discharge flow rate. In this paper, the discharge flow rate and air power of the positive displacement type air compressor is simulated by changing the temperature of suction air and the relationship between the suction air temperature and the performance variation of the air compressor is analyzed. As a result, we know that as the suction temperature of air is lowered, the discharge mass flow-rate is increased, but the specific enthalpy is reduced rather than increased, which means that the power of the discharged air is not greatly increased even if lower the suction air temperature.

Prediction of Oil Lifetime due to Overheating of Oil and Bearing Housing in a Pump (펌프 베어링하우징에서 베어링과 오일의 과열 및 오일수명 예측)

  • 한상규;강병하;이봉주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.5
    • /
    • pp.408-413
    • /
    • 2004
  • An experimental study has been carried out to investigate overheating of oil and bearing housing during pump operation. This problem is of particular interest in the pre diction of lifetime and failure of pump. Transient variation of oil temperature as well as bearing housing temperature is measured to study the effect of oil viscosity, oil amount, and discharge flow rate of pump. It is found that optimal oil quantity as well as proper viscosity of oil is required to keep the safe temperature level of oil and bearing housing in a pump. The oil temperature at steady state is almost not affected by discharge flow rate in the range of discharge flow rates considered in the present study.

Analyses of Correlation Between Groundwater Movement and Tidal Effect in West Costal Landfill Area (서해안 매립지 내 지하수유동과 조석에 관한 상관성 분석)

  • Park Jong-Oh;Song Moo-Yaung;Park Chung-Hwa
    • The Journal of Engineering Geology
    • /
    • v.16 no.3 s.49
    • /
    • pp.293-300
    • /
    • 2006
  • The groundwater movement in the west costal landfill area was analyzed by measuring N value by Standard Penetration Test, coefficient of permeability by falling head method, linear structure analysis by Digital Elevation Method, groundwater flow direction and rate by flowmeter logging due to tidal variation in the each borehole. The coefficients of permeability of the weathered zone and of the marine deposit showed similar values although some values of weathered zone show smaller values than those of the marine deposit. The major groundwater flow and rate in the marine deposit observed as east-west direction due to tidal variation, but on the other hand it was observed as N45E in weathered zone which is the major direction of the linear structures in the area. 2 hours delayed changes of the groundwater flow direction was observed during the 24 hours observation, and it seems to be a travel time of the tidal wave which cause the continuous change of the hydaulic gradient of the groundwater.

A study on the pulsating combustion of coal in a Rijke type combustor (Rijke형 연소기에서 석탄의 맥동연소에 관한 연구)

  • 권영필;이동훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.3
    • /
    • pp.508-516
    • /
    • 1989
  • The objective of this study is to investigate on the pulsating combustion of a granular coal in a Rijke type pulse combustor. The combustor is made of a 120cm long pipe with a honeycomb as a fire grate in the lower half. A fixed amount of coal is laid on the honeycomb and burned downward after ignition by using propane gas. Then the combustion driven acoustic oscillation occurs and makes the combustion pulsate with a very high amplitude. The effect of the pulsation and the air flow rate on the combustion characteristics is examined in comparison with the normal combustion. The non-pulsating combustion is made possible by placing absorbing material under the honeycomb. The combustion phenomena are observed visually, the burning time is measured in order to evaluate the combustion rate, and the variation of the gas temperatures is recorded. It is found that the fuel particle is greatly agitated like boiling by the flow pulsation and the burning-down velocity is so fast that the fuel is burned almost simultaneously. The combustion rate can be increased as twice as that of non-pulsating combustion with increase of the air flow rate. And the combustion becomes clean with less soot deposit and emission.

A Study on Performance Characteristics of Heat Exchanger for Heat Pump with R410A Refrigerant (R410A 냉매를 사용한 열펌프용 열교환기의 형상에 따른 성능특성 연구)

  • 정규하;박윤철;오상경
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.4
    • /
    • pp.340-348
    • /
    • 2004
  • The air and refrigerant side heat transfer performances are key parameters to improve heat transfer efficiency of the heat exchanger including the fan performance. Design of the fins, treatment of the tube inside, tube diameter and tube array effect heat transfer performance of the heat exchanger. The heat exchanger is used as a condenser at cooling mode and used as an evaporator at heating mode in the heat pump system. The heat pump system uses R410A as the refrigerant. The heat exchangers are consisted with 7 mm diameter tubes with slit-type fins. The study was conducted with variation of arrangement of the refrigerant path and air flow rate and refrigerant pressure drop and heat transfer rate were measured with a code tester. The capacity of the 3 path heat exchanger is more efficient than 2 or 4 path heat exchangers in heating or cooling modes.

Multivariable QLQC/LTR depth control of underwater vehicles with deadzone (사역대를 갖는 수중운동체의 다변수 QLQG/LTR 심도제어)

  • 한성익;김종식;최중락
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.179-184
    • /
    • 1993
  • In general, for underwater vehicles in low speed, depthkeeping operations are carried out by using the variation of the weight in the seaway tank. The depthkeeping control of underwater vehicles is difficult because of the deadzone effect in the flow rate control valve. In this paper, the nonlinear multivariable QLQG/LTR control system using a seaway tank and bow planes is synthesized in order to improve the performance of the depth control system. The computer simulation results show the multivariable QLQG/LTR control system has good depth control performance under the deadzone effect.

  • PDF

Performance Evaluation of Ocean Small Hydropower Plant by Analyzing Water Level and Flow Rate of Circulating Water (방류수의 수위 및 유량 분석을 통한 해양 소수력 성능평가)

  • Kang, Keum-Seok;Kim, Ji-Young;Ryu, Moo-Sung
    • New & Renewable Energy
    • /
    • v.5 no.3
    • /
    • pp.32-39
    • /
    • 2009
  • The Samcheonpo ocean small hydropower plant (SHP) has a special feature of using marginal hydraulic head of circulating water system of fossil fuel power plant as a power source and having the characteristics of general hydropower generation and tidal power generation as well. Also, it contributes to reducing green house gases and developing clean energy source by recycling circulating water energy otherwise dissipated into the ocean. The efficiency of small hydropower plant is directly affected by effective head and flow rate of discharged water. Therefore, the efficiency characteristics of ocean hydropower plant are analyzed with the variation of water level and flow rate of discharged water, which is based on the accumulated operation data of the Samcheonpo hydropower plant. After the start of small hydropower plant operation, definite rise of water level was observed. As a result of flow pattern change from free flow to submerged flow, the instability of water surface in overall open channel is increased but it doesn't reach the extent of overflowing channel or having an effect on circulation system. Performance evaluation result shows that the generating power and efficiency of small hydropower exceeds design requirements in all conditions. Analysis results of CWP's water flow rate verify that the amount of flowing water is measured less and the highest efficiency of small hydropower plant is achieved when the effective head has its maximum value. In conclusion, efficiency curve derived from water flow rate considering tidal level shows the best fitting result with design criteria curve and it is verified that overall efficiency of hydropower system is satisfactory.

  • PDF

The Effect of Coal Particle Arrangement and Size Difference on Combustion Characteristics (미분탄 입자의 크기 차이와 배열이 연소특성에 미치는 영향)

  • Kim, Ki-Duck;Kim, Ho-Young;Cho, Chong-Pyo;Yoon, Suk-Goo
    • 한국연소학회:학술대회논문집
    • /
    • 2007.05a
    • /
    • pp.47-53
    • /
    • 2007
  • The laminar combustion characteristics of interacting coal particles in a convective flow are numerically investigated at particle arrangement and size difference. The numerical simulations, which use the two-step global reaction model to account for the surrounding gas effect, show the detailed interaction among the inter-space particles, undergoing devolatilization and subsequent char burning. Several parametric studies, which include the effect of the gas temperature (1700 K), high pressure(10 atm) and variation in geometrical arrangement of the particle diameter on the volatile release rate and the char combustion rate, have been carried out. The comparison indicates that the shift to the multiple particle arrangement resulted in the substantial change of the combustion characteristics and that the volatile release rate of the interacting coal particles exhibits a strong dependency on the particle spacing and size difference.

  • PDF

Study on K-factor for temperature variation of working fluid in spray nozzle with orifice (오리피스형 분사노즐에서 작동유체의 온도변화에 따른 K-factor에 관한 연구)

  • Bae, K.Y.;Chung, H.T.;Kim, C.H.;Kim, H.B.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.12-18
    • /
    • 2008
  • In the present study, the numerical simulation has been performed to investigate K-factor for temperature variation of working fluid in spray nozzle with orifice. The commercial CFD software, Fluent with the proper modeling was applied for analyzing the internal of the spray nozzle. Numerical result for K-factor at $20^{\circ}C$ agrees with the experimental result that it applied n=0.5 within about 7% error. The pressure drop inside nozzle is showed 20% passing swirler, 70% in the region between the outlet of swirler and the orifice and 10% at the outlet of orifice. As the operating pressure is increased, K-factor is decreased by effect of flow resistance at it's inlet before pass swirler. The temperature increase of working fluid reduced the flow rate according to reducing of density, and average 1.23% decrease is showed in the present research.

  • PDF