• Title/Summary/Keyword: Education Data Mining

Search Result 268, Processing Time 0.021 seconds

Personalized Advertisement Service Method Using Web Log Mining (웹로그 마이닝을 이용한 개인화 광고 서비스 기법)

  • Kim, Seok-Hun;Kim, Eun-Soo
    • The Journal of Korean Association of Computer Education
    • /
    • v.8 no.1
    • /
    • pp.117-127
    • /
    • 2005
  • Numerous internet pop advertisement are being provided according to the rapid development of e-commercial and a rise in users. However, it has not been based on analysis of users' inclination but just one-sided providing. With that reason, many web-site provider want to advertis e more efficient and distinguished Internet-advertisement as analyzing Server's Log accessed. In this thesis, we have studied and tested relatively simply adoption system to provide personalized advertisement service. In order to influence personal disposition to system as the most effective way, it first of all uses History files as source data and after refining it, it can search not only visitors' inclination but also the others' visit-list on the other server. As a result of it, it can make advertisement more reality and activity.

  • PDF

A Case Study on Characteristics of Gender and Major in Career Preparation of University Students from Low-income Families: Application of Text Frequency Analysis and Association Rules (저소득층 대학생들의 진로준비과정에서의 성별·전공별 특성에 대한 사례연구: 텍스트 빈도분석과 연관분석의 적용)

  • Lee, Jihye;Lee, Shinhye
    • Journal of Digital Convergence
    • /
    • v.16 no.12
    • /
    • pp.61-69
    • /
    • 2018
  • This study aims to understand and to infer the implications from the career preparation experiences of low-income university students in the context of high youth unemployment rate and the polarization of the social classes. For this purpose, we selected 13 university students who received scholarship from the S scholarship foundation and conducted analysis using text mining techniques based on the six-time interviews. According to the results, university students seem to be influenced by home environment and income level when recalling previous academic experience or designing career during the interview process. Also, these differences were found to have different characteristics according to gender and major. This study is meaningful in that the qualitative research data is analyzed by applying the text mining technique in a convergent way. As a result, the college life and career preparation of low-income university students were explored through the frequency and relation of words.

A Study on the Sensibility Analysis of School Life and the Will to Farming of Students at Korea National College of Agricultural and Fisheries (한국농수산대학 재학생의 학교생활 감성 분석 및 영농의지에 관한 연구)

  • Joo, J.S.;Lee, S.Y.;Kim, J.S.;Shin, Y.K.;Park, N.B.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.21 no.2
    • /
    • pp.103-114
    • /
    • 2019
  • In this study we examined the preferences of college life factors for students at Korea National College of Agriculture and Fisheries(KNCAF). Analytical techniques of unstructured data used opinion mining and text mining techniques, and the results of text mining were visualized as word cloud. And those results were used for statistical analysis of the students' willingness to farm after graduation. The items of the favorable survey consisted of 10 items in 5 areas including university image, self-capacity, dormitory, education system, and future vision. After classifying the emotions of positive and negative in the collected questionnaire, a dictionary of positive and negative was created to evaluate the preference. The items of 'college image' at the time of university support, 'self after 10 years' after graduation, 'self-capacity' and 'present KNCAF' showed high positive emotion. On the other hand, positive emotion was low in the items of 'college dormitory', 'educational course', 'long-term field practice' and 'future of Korean agriculture'. In the cross-analysis of the difference in the will to farming according to gender, farming base, and entrance motivation, the will to farm according to gender and entrance motivation showed statistically significant results, but it was not significant in farming base. Also in binary logistic regression analysis on the will to farming, the statistically significant variable was found to be 'motivation for admission'

A Study on Implications of AI Education Policy using Keyword Analysis (키워드 분석을 활용한 인공지능 교육 정책의 시사점 연구)

  • Jaeho Lee;Hongwon Jeong
    • Journal of The Korean Association of Information Education
    • /
    • v.26 no.5
    • /
    • pp.397-406
    • /
    • 2022
  • In this study, We confirmed the three major policy directions presented in "Educational Policy Direction and Core Tasks in the Age of Artificial Intelligence" announced by the government in 2020, and analyzed how the direction and key tasks are reflected in the policy from keywords selected from government policy data related to artificial intelligence education published between '20 and '22. It was extracted and analyzed how the direction and key tasks are reflected in the policy. As a result of text mining and the topic analysis, the direction of education set was analyzed and various types of activities for nurturing talents in the field of artificial intelligence were confirmed. Ultimately, the government's policy direction is to apply the '25 revised curriculum in earnest, while advancing and activating the AI education policy and allowing it to settle naturally in the field. It could be predicted that related policies and tasks would appear more and more.

A Study on the Application of Assistive Technology Using Big Data and Artificial Intelligence (빅데이터와 인공지능 기술을 이용한 보조공학 활용 방안에 관한 소고)

  • 김용욱;김남진
    • The Journal of Special Children Education
    • /
    • v.20 no.1
    • /
    • pp.53-68
    • /
    • 2018
  • Purpose: The purpose of this study is to explore ways to utilize assistive technology in the era of the fourth industrial revolution. Method: Through the review of the literature on the fourth industrial revolution, the researchers established the concepts of major core technologies, educational utilization of major core technologies, problems and alternatives in utilizing assistive technology. Based on this, the study examined the concepts of big data and artificial intelligence corresponding to core technology, and examined the built-in learning analytics, educational data mining function, and artificial intelligence of assistive technology devices. Results & Conclusion: The results of the study were as follows. First, by providing learning analytics and educational data mining for assistive technology devices, the assistive technology devices itself should be able to collect and analyze various information about the technological needs of the special education subjects, basic information and the characteristics of the learner, and the environment of the learner. Second, through the artificial intelligence of the assistive technology device itself, the special teachers should be able to participate in the overall process from the information acquisition of the assistive technology device and suggest the utilization of the expert system considering the reality.

Study on the Analysis of National Paralympics by Utilizing Social Big Data Text Mining (소셜 빅데이터 텍스트 마이닝을 활용한 전국장애인체육대회 분석 연구)

  • Kim, Dae kyung;Lee, Hyun Su
    • 한국체육학회지인문사회과학편
    • /
    • v.55 no.6
    • /
    • pp.801-810
    • /
    • 2016
  • The purpose of the study was to conduct a text mining examining keywords related to the National Paralympics and provide the fundamental information that would be used to change perception of people without disabilities toward disabilities and to promote the social participation of people with and without disabilities in the National Paralympics. Social big data regarding the National Paralympics were retrieved from news articles and blog postings identified by search engines, Naver, Daum, and Google. The data were then analysed using R-3.3.1 Version Program. The analysing techniques were cloud analysis, correlation analysis and social network analysis. The results were as follows. First, news were mainly related to game results, sports events, team participation and host avenue of the 33rd ~ 36th National Paralympics. Second, search results about the 33rd ~ 36th National Paralympics between Naver, Daum, and Google were similar to one another. Thirds, the keywrods, National Paralympics, sports for the disabled, and sports, demonstrated a high close centrality. Further, degree centrality and betweenness centrality were associated in the keywords such as sports for all, participation, research, development, sports-disabled, research-disabled, sports for all-participation, disabled-participation, sports for all-disabled, and host-paralympics.

Using Text-mining Method to Identify Research Trends of Freshwater Exotic Species in Korea (텍스트마이닝 (text-mining) 기법을 이용한 국내 담수외래종 연구동향 파악)

  • Do, Yuno;Ko, Eui-Jeong;Kim, Young-Min;Kim, Hyo-Gyeom;Joo, Gea-Jae;Kim, Ji Yoon;Kim, Hyun-Woo
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.3
    • /
    • pp.195-202
    • /
    • 2015
  • We identified research trends for freshwater exotic species in South Korea using text mining methods in conjunction with bibliometric analysis. We searched scientific and common names of freshwater exotic species as searching keywords including 1 mammal species, 3 amphibian-reptile species, 11 fish species, 2 aquatic plant species. A total of 245 articles including research articles and abstracts of conference proceedings published by 56 academic societies and institutes were collected from scientific article databases. The search keywords used were the common names for the exotic species. The $20^{th}$ century (1900's) saw the number of articles increase; however, during the early $21^{st}$ century (2000's) the number of published articles decreased slowly. The number of articles focusing on physiological and embryological research was significantly greater than taxonomic and ecological studies. Rainbow trout and Nile tilapia were the main research topic, specifically physiological and embryological research associated with the aquaculture of these species. Ecological studies were only conducted on the distribution and effect of large-mouth bass and nutria. The ecological risk associated with freshwater exotic species has been expressed yet the scientific information might be insufficient to remove doubt about ecological issues as expressed by interested by individuals and policy makers due to bias in research topics with respect to freshwater exotic species. The research topics of freshwater exotic species would have to diversify to effectively manage freshwater exotic species.

Achievements of Characterized Education for Healthcare Data Science Initiative (대학 특성화 사업 성과에 관한 연구-보건의료 데이터 사이언티스트 프로그램을 중심으로)

  • Park, HwaGyoo
    • Journal of Service Research and Studies
    • /
    • v.9 no.3
    • /
    • pp.87-99
    • /
    • 2019
  • Healthcare and data science are often linked through finances as the industry attempts to reduce its expenses with the help of large amounts of data. Data science and medicine are rapidly developing, and it is important that they advance together. Data science is a driving force in transition of healthcare systems from treatment-oriented to preventive care in healthcare 3.0 era. It enables customized precision-based medicine that current healthcare systems cannot facilitate, and discovers more cost-effective treatment. Currently, healthcare big data is in the reality of medical institution, public health, medical academia, pharmaceutical sector as well as insurance agency. With this motivation, the medical college of Soonchunhyang university has performed a 'healthcare data science initiative(HDSI)' since 2014. Most of domestic HDSI programs focus on short-term contents such as mentoring and sharing cases for data science. Therefore, it is difficult to provide education tailored to the level of skills and job competency required at the practical site. Soonchunhyang HDSI implemented specialized strategies for improving resilience and response to changes in the IT education of current healthcare with the emphasis on the need for systematic activation of the practical HDSI. The HDSI has been performed as a part of on industry-academic link program in CK-1. Through quantitative and qualitative analysis, this paper discussed the HDSI process, performance, achievement, and implications.

A Study on Predictors of Academic Achievement in College Students : Focused on J University (대학생의 학업성취도 예측요인 연구 : J 대학을 중심으로)

  • Son, Yo-Han;Kim, In-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.1
    • /
    • pp.519-529
    • /
    • 2020
  • The purpose of this study is to establish a model for predicting academic achievement of college students and to reveal the interrelationship and relative influence of each factor. For this, we surveyed the personal factors and learning strategy factors of 1,310 learners at J University, and analyzed the discriminant factors and patterns of the predictors of academic achievement through the decision tree analysis, a data mining method, and examined the relative effects of each factor. Binary logistic regression analysis was performed for viewing. As a result, the most important factor for predicting academic achievement was efficacy, and other factors such as motivation, time management, and depression were predictive of academic achievement. The patterns of factors predicting academic achievement were found to be high in efficacy and time management, and high in motivation for learning even if the efficacy was moderate. Low efficacy and learning motivation, and high depression have been shown to decrease academic achievement. Based on these results, the study suggested the efficacy and motivation to improve academic achievement of college students, strengthening time management education, and managing negative emotions.

The Perception Analysis of Autonomous Vehicles using Network Graph (네트워크 그래프를 활용한 자율주행차에 대한 인식 분석)

  • Hyo-gyeong Park;Yeon-hwi You;Sung-jung Yong;Seo-young Lee;Il-young Moon
    • Journal of Practical Engineering Education
    • /
    • v.15 no.1
    • /
    • pp.97-105
    • /
    • 2023
  • Recently, with the development of artificial intelligence technology, many technologies for user convenience are being developed. Among them, interest in autonomous vehicles is increasing day by day. Currently, many automobile companies are aiming to commercialize autonomous vehicles. In order to lay the foundation for the government's new and reasonable policy establishment to support commercialization, we tried to analyze changes and perceptions of public opinion through news article data. Therefore, in this paper, 35,891 news article data mentioning terms similar to 'autonomous vehicles' over the past three years were collected and network analyzed. As a result of the analysis, major keywords such as 'autonomous driving', 'AI', 'future', 'Hyundai Motor', 'autonomous driving vehicle', 'automobile', 'industrial', and 'electric vehicle' were derived. In addition, the autonomous vehicle industry is developing into a faster and more diverse platform and service industry by converging with various industries such as semiconductor companies and big tech companies as well as automobile companies and is paying attention to the convergence of industries. To continuously confirm changes and perceptions in public opinion, it is necessary to analyze perceptions through continuous analysis of SNS data or technology trends.