• 제목/요약/키워드: Edible vaccines

검색결과 12건 처리시간 0.017초

바이러스 질병 예방을 위한 식물 경구 백신 연구 동향 (Recent Studies of Edible Plant Vaccine for Prophylactic Medicine against Virus-mediated Diseases)

  • 한범수;박종석;김형국;하선화;조강진;김용환;김종범
    • Journal of Plant Biotechnology
    • /
    • 제31권2호
    • /
    • pp.151-161
    • /
    • 2004
  • Transgenic plants have been studied as delivery system for edible vaccine against various diseases. Edible plant vaccines have several potential advantages as follows: an inexpensive source of antigen, easy administration, reduced need for medical personnel, economical to mass produce and easy transport, heat-stable vaccine without refrigerator, generation of systemic and mucosal immunity and safe antigen without fetal animal-virus contaminants. The amount of recombinant antigens in transgenic plants ranged from 0.002 to 0.8% in total soluble protein, depending on promoters for the expression of interested genes and plants to be used for transformation. Throughout the last decade, edible plant vaccine made notable progresses that protect from challenges against virus or bacteria. However edible plant vaccines have still problems that could be solved. First, the strong promoter or inducible promoter or strategy of protein targeting could be solved to improve the low expression of antigens in transgenic plants. Second, the transformation technique of target plant should be developed to be able to eat uncooked. Third, marker-free vector could be constructed to be more safety. In this review we describe advances of edible plant vaccines, focusing on the yields depending on plants/promoters employed and the results of animal/clinical trials, and consider further research for the development of a new plant-derived vaccine.

어류 경구백신 현황과 전망 (Edible vaccine for aquacultured fish: present and prospect)

  • 박은준;김미나;박주영;차재호;정화지
    • Journal of Plant Biotechnology
    • /
    • 제37권3호
    • /
    • pp.269-274
    • /
    • 2010
  • As the capture fishing industry has declined, the aquaculture industry has become an important source of seafood. With this tendency all fish farming will be performed by large-scale farms where the fish are cultivated in much high density and as a result the incidence of infectious diseases increases. Therefore, vaccination has become an increasingly important part of aquaculture as a cost effective method of controlling various diseases. The early fish vaccines were the formalin inactivated bacteria or virus cultures, which were administered by either immersion or injection. Recombinant DNA biotechnology allowed us to develop orally administrated DNA and recombinant vaccines. In terms of the manufacturing process and cost, Lemna and Spirodela is the most efficient and reliable plant expression system for the production of edible vaccine.

Expression of Dengue virus EIII domain-coding gene in maize as an edible vaccine candidate

  • Kim, Hyun A;Kwon, Suk Yoon;Yang, Moon Sik;Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • 제41권1호
    • /
    • pp.50-55
    • /
    • 2014
  • Plant-based vaccines possess some advantages over other types of vaccine biotechnology such as safety, low cost of mass vaccination programs, and wider use of vaccines for medicine. This study was undertaken to develop the transgenic maize as edible vaccine candidates for humans. The immature embryos of HiII genotype were inoculated with A. tumefaciens strain C58C1 containing the binary vectors (V662 or V663). The vectors carrying nptII gene as selection marker and scEDIII (V662) or wCTB-scEDIII (V663) target gene, which code EIII proteins inhibite viral adsorption by cells. In total, 721 maize immature embryos were transformed and twenty-two putative transgenic plants were regenerated after 12 weeks selection regime. Of them, two- and six-plants were proved to be integrated with scEDIII and wCTB-scEDIII genes, respectively, by Southern blot analysis. However, only one plant (V662-29-3864) can express the gene of interest confirmed by Northern blot analysis. These results demonstrated that this plant could be used as a candidated source of the vaccine production.

Output traits in crop plants: Nutrients and pharmaceuticals

  • Yu, Ju-Kyung
    • Journal of Plant Biotechnology
    • /
    • 제37권1호
    • /
    • pp.67-71
    • /
    • 2010
  • Output traits centered on improved plant-based products will find their way to consumers in such ways as nutritionally enhanced foods, therapeutic proteins for disease treatment and vaccines, bio-industrial products, modified oil quality and biofuels. Significant progress in biotechnology has occurred over the last several decades. The importance of output traits development and production using biotechnology will impact not only agribusiness, but also pharmaceutical and food industries. The objective of this paper is to review briefly the current status of output traits development in crop plants using nutrients and pharmaceuticals as examples.

백신 전달기술 개발 동향과 과제 (Development of Vaccine Delivery System and Challenges)

  • 정형일;김정동;김미루;마니타 당골
    • KSBB Journal
    • /
    • 제25권6호
    • /
    • pp.497-506
    • /
    • 2010
  • Vaccine is a protective clinical measure capable of persuading immune system against infectious agents. Vaccine can be categorized as live attenuated and inactivated. Live attenuated vaccines activate immunity similar to natural infection by replicating living organisms whereas inactivated vaccines are either whole cell vaccines, eliciting immune response by killed organisms,or subunit vaccines, stimulating immunity by non-replicating sub cellular parts. The components of vaccine play a critical role in deciding the immune response mediated by the vaccine. The innate immune responds against the antigen component. Adjuvants represent an importantcomponent of vaccine for enhancing the immunogenicity of the antigens. Subunit vaccines with isolated fractions of killed and recombinant antigens are mostly co-administered with adjuvants. The delivery system of the vaccine is another essential component to ensurethat vaccine is delivered to the right target with right dosage form. Furthermore, vaccine delivery system ensures that the desired immune response is achieved by manipulating the optimal interaction of vaccine and adjuvantwith the immune cell. The aforementioned components along with routes of administration of vaccine are the key elements of a successful vaccination procedure. Vaccines can be administered either orally or by parenteral routes. Many groups had made remarkable efforts for the development of new vaccine and delivery system. The emergence of new vaccine delivery system may lead to pursue the immunization goals with better clinical practices.

세균성 질병 예방을 위한 식물 경구 백신 연구 동향 (Recent Studies on the Edible Plant Vaccine for Prophylactic Medicine against Microorganism-Mediated Diseases)

  • 한범수;정영재;노경희;박종석;조강진;김용환;김종범
    • Journal of Plant Biotechnology
    • /
    • 제32권4호
    • /
    • pp.233-241
    • /
    • 2005
  • Plants have considerable advantages for the production of antigenic proteins because they provide an inexpensive source of protein and an easy administration of vaccine. Since a publication describing edible plant vaccine of HBsAg in 1992, a number of laboratories around the world have studied the use of plants as the bioreactor to produce antigenic proteins of human or animal pathogens. Over the last ten years, these works have been mainly focused on three major strategies for the production of antigenic proteins in plants: stable genetic transformation of either the nuclear or plastid genome, or transient expression in plants using viral vectors. As many antigenic proteins have been expressed in tobacco, also several laboratories have succeeded to express genes encoding antigenic proteins in other crop plants: potato, tomato, maize, carrot, soybean and spinach. At present many works for the production of edible plant vaccine against bacteria-mediated diseases have mostly performed the studies of enterotoxins and adhesion proteins. Also the development of new-type antigens (pili, flagella, surface protein, other enterotoxin and exotoxin etc.) is required for various targets and more efficacy to immunize against microorganism pathogens. Many works mostly studied in experimental animals had good results, and phase I clinical trial of LTB clearly indicated its immunogenic ability. On the other hand, edible plant vaccines have still problems remained to be solved. In addition to the accumulation of sufficient antigen in plants, human health, environment and agriculture regulation should be proven. Also oral tolerance, the physiological response to food antigens and commensal flora is the induction of a state of specific immunological unresponsiveness, needs to be addressed before plant-derived vaccine becomes a therapeutic option.

디프테리아 백신의 진화와 물리화학적, 분자생물학적, 면역학적 지식의 진보에 따른 새로운 백신의 개발에 관한 고찰연구 (The Evolution and Value of Diphtheria Vaccine)

  • 배경동
    • KSBB Journal
    • /
    • 제26권6호
    • /
    • pp.491-504
    • /
    • 2011
  • This review article provides an overview of the evolution of diphtheria vaccine, its value and its future. Diphtheria is an infectious illness caused by diphtheria toxin produced by pathogenic strains of Corynebacterium diphtheriae. It is characterized by a sore throat with membrane formation due to local tissue necrosis, which can lead to fatal airway obstruction; neural and cardiac damage are other common complications. Diphtheria vaccine was first brought to market in the 1920s, following the discovery that diphtheria toxin can be detoxified using formalin. However, conventional formalin-inactivated toxoid vaccines have some fundamental limitations. Innovative technologies and approaches with the potential to overcome these limitations are discussed in this paper. These include genetic inactivation of diphtheria toxoid, innovative vaccine delivery systems, new adjuvants (both TLR-independent and TLR-dependent adjuvants), and heat- and freeze-stable agents, as well as novel platforms for producing improved conventional vaccine, DNA vaccine, transcutaneous (microneedle-mediated) vaccine, oral vaccine and edible vaccine expressed in transgenic plants. These innovations target improvements in vaccine quality (efficacy, safety, stability and consistency), ease of use and/or thermal stability. Their successful development and use should help to increase global diphtheria vaccine coverage.

자돈 설사병에 대한 형질전환 당근백신의 방어 효능 평가 (Protective effects of a transgenic carrot vaccine on piglet diarrhea)

  • 김영훈;남진영;이향근;황철호;한정희
    • 대한수의학회지
    • /
    • 제51권2호
    • /
    • pp.151-158
    • /
    • 2011
  • The study evaluated whether a transgenic carrot vaccine could induce a K88-specific immune response in sows and whether the resultant maternal antibody could protect piglets against enterotoxigenic Escherichia coli (ETEC) K88ac infection. Sows (n = 15) selected randomly from a farm in Korea were assigned to three groups (n = 5 per group: control [untreated]), group A (orally inoculated with a nontransgenic and transgenic carrot vaccines at 2 and 4 weeks ante partum, respectively), and group B (conventionally vaccinated according to the manufacturer's instructions). After 7 days of lactation, 5 piglets selected randomly from each group were challenged with $1{\times}10^{10}$ colony forming units/mL ETEC K88ac. Group C had the lowest mean fecal consistency score on post-challenge days 1 and 7. Histiologically, On post-challenge day 7, group C showed an increased duodenum and ileum villus:crypt ratio, compared to group A in the duodenum, with group B displaying the highest ratio. Groups B and C had more increased villus width than group A in the jejunum. Group C displayed the greatest increase in villus width in the ileum. The colostrums and serum from groups B and C displayed higher concentrations of IgA and IgG against ETEC K88, compared to group A. Based on the results, it was concluded that the transgenic carrot vaccine in sow per oral may have an effect on preventing piglet diarrhea as good as commercial recombinant vaccine.

Oral Administration of Poly-Gamma-Glutamic Acid Significantly Enhances the Antitumor Effect of HPV16 E7-Expressing Lactobacillus casei in a TC-1 Mouse Model

  • Kim, Eunjin;Yang, Jihyun;Sung, Moon-Hee;Poo, Haryoung
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권9호
    • /
    • pp.1444-1452
    • /
    • 2019
  • The conventional prophylactic vaccines for human papillomavirus (HPV) efficiently prevent infection with high-risk HPV types, but they do not promote therapeutic effects against cervical cancer. Previously, we developed HPV16 E7-expressing Lactobacillus casei (L. casei-E7) as a therapeutic vaccine candidate for cervical cancer, which induces antitumor therapeutic effects in a TC-1 murine cancer model. To improve the therapeutic effect of L. casei-E7, we performed co-treatment with poly-gamma-glutamic acid (${\gamma}-PGA$), a safe and edible biomaterial naturally secreted by Bacillus subtilis. We investigated their synergistic effect to improve antitumor efficacy in a murine cancer model. The treatment with ${\gamma}-PGA$ did not show in vitro cytotoxicity against TC-1 tumor cells; however, an enhanced innate immune response including activation of dendritic cells was observed. Mice co-administered with ${\gamma}-PGA$ and L. casei-E7 showed significantly suppressed growth of TC-1 tumor cells and an increased survival rate in TC-1 mouse models compared to those of mice vaccinated with L. casei-E7 alone. The administration of ${\gamma}-PGA$ markedly enhanced the activation of natural killer (NK) cells but did not increase the E7-specific cytolytic activity of $CD8^+$ T lymphocytes in mice vaccinated with L. casei-E7. Overall, our results suggest that oral administration of ${\gamma}-PGA$ induces a synergistic antitumor effect in combination with L. casei-E7.

아그로박테리움을 이용한 Actinobacillus pleuropneumoniae ApxIIA (ApxII toxin) 유전자 발현 옥수수 형질전환체 개발 (The development of transgenic maize expressing Actinobacillus pleuropneumoniae ApxIIA gene using Agrobacterium)

  • 김현아;유한상;양문식;권석윤;김진석;최필선
    • Journal of Plant Biotechnology
    • /
    • 제37권3호
    • /
    • pp.313-318
    • /
    • 2010
  • 돼지 흉막폐렴백신을 개발하기 위해 옥수수 HiII genotype 으로부터 유도한 type II형의 배발생캘러스를 식물발현벡터 pMYV611, pMYV613, pMYV616, V621, V622 및 V623로 형질전환시킨 Agrobacterium (C58C1)과 공동배양 하였다. 이들 식물발현벡터는 paromomycin 항생제 저항 유전자인 NPTII 선발마커와 표적 유전자로서 흉막폐렴균의 여러 가지 혈청을 생산하는 apxIIA유전자로 재조합하여 구축하였다. 식물발현벡터pMYV611, pMYV613, pMYV616, V621, V622 및V623의 경우 각각 4,120개, 5,959개, 7,581개, 52,329개, 48,948개 및 56,188개의 캘러스 클론을 Agrobacterium과 공동한 후 NPTII assay kit에 의해 nptII유전자의 발현빈도를 조사한 결과 각 벡터별로 2.3-4.4%의 캘러스 클론에서 항체결합 양성반응을 보였고, 이들 중 최종적으로 선발된 형질전환 캘러스 클론은 pMYV611에서 3개 (0.07%), pMYV613에서 4개 (0.07%), pMYV616에서 2개 (0.02%), V621에서 51개 (0.1%), V622에서 72개 (0.15%) 및 V623에서 102개 (0.18%)를 각각 얻었다. 형질전환된 캘러스 클론으로부터 재분화된 식물체에서 유전자 도입여부를 Southern 분석으로 통해 확인한 결과 pMYV613에서 2개 식물체 및 V623에서 얻은 2개 식물체에서 각각 확인되었다.