• Title/Summary/Keyword: Edible film

Search Result 75, Processing Time 0.024 seconds

Modified Atmosphere Storage for Extending Shelf Life of Oyster Mushroom and Shiitake (환경가스조절 저장방법을 이용한 느타리버섯과 표고버섯의 유통기간 연장)

  • Han, Dae-Seok;Ahn, Byung-Hak;Shin, Hyun-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.24 no.4
    • /
    • pp.376-381
    • /
    • 1992
  • In order to study the effect of modified atmosphere storage on extending shelf life of mushrooms, oyster mushroom and Shiitake were wrapped with polyethylene film (PE, $50\;{\mu}m$), and stored at $0.5^{\circ}C$. Mushrooms packed with conventional hardboard box (4kg) lost marketability within $5{\sim}6$ days due to weight loss, shrinkage, browning, spore formation and/or mycellium growth. PE-packing could prevent or retard the deterioration of the mushrooms in the aspects of appearance, texture, discoloration, and microbial contamination. This situation can be best characterized by the reduced respiration rate resulted from the elevated level of carbon dioxide and the reduced level of oxygen in the bag. Although the appearance of the oyster mushroom was maintained for one month, its shelf life was limited to 15 days because of tissue softening. Discoloration of the pileus of shiitake mushroom appears to be the most important factor to determine its marketability. For example, extension of shelf life of Dongo was limited to 15 days, principally due to the browning of the pileus. Shelf life of Hawgo whose color of the pileus changed little over the experimental period, however, could be extened to more than one month.

  • PDF

Effect of Soil Salinity on Nitrate Accumulation of Lettuce (토양 염류집적이 상추의 Nitrate 축적에 미치는 영향)

  • Jin, Sun-Jae;Cho, Hyun-Jong;Chung, Jong-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.2
    • /
    • pp.91-96
    • /
    • 2004
  • Accumulation of nitrate in edible crops is undesirable due to potential risks to human health. Since nitrate has a role in the osmotic regulation of plants, salt accumulation in soil is expected to stimulate nitrate accumulation in plants. Lettuce (Lactuca sativa L.) was grown in soils of different salinities, 9.69 and $4.49dS\;m^{-1}$, in a greenhouse, and the effect of soil salinity on nitrate accumulation in lettuce was investigated. Content of nitrate in the lettuce increased significantly as soil salinity increased under low light intensity and ample supply of nitrate in root media. Soluble sugar and oxalate contents in lettuce were also significantly higher in the soil of higher salinity. Phosphate, Cl, and $SO_4$ contents in lettuce were not significantly different in soils of different salinities. Among the cations, K content in lettuce was significantly higher in the soil of higher salinity, but Na, Ca, and Mg comtents were not much influenced. Comparing to the lettuce grown in low salinity soil, although the growth of lettuce was decreased by 9% in the soil of higher salinity, nitrate accumulation in the lettuce was increased by 18.6%. These results indicate that higher nitrate content in lettuce of higher salinity soil is a positive accumulation to adapt to the water stress condition. The nitrate accumulation of vegetables grown in plastic film houses is known to be due to the heavy fertilization and low light intensity, but salt accumulation in the soil, which can lower soil water potential, is expected to stimulate the nitrate accumulation further.

Cold Storage Characteristics of Early Variety of Citrus unshiu Produced in Cheju with Various Treatments (처리조건에 따른 조생온주밀감의 저온저장 특성)

  • Yang, Young-Taek;Song, Sang-Cherl;Kim, Seong-Hak;Kim, Ji-Yong;Koh, Jeong-Sam
    • Applied Biological Chemistry
    • /
    • v.40 no.2
    • /
    • pp.117-122
    • /
    • 1997
  • The conditions of cold storage of Citrus unshiu Marc. var. miyagawa produced in Cheju were investigated. Compared to the citrus fruits stored at room temperature, the content of soluble solids, total sugar, vitamin C and specific gravity decreased slightly on the fruits stored at $4^{\circ}C$ and 87% relative humidity. Decay ratio and weight loss were below 10% on keeping freshness relatively till late of March during cold storage. Weight loss, decrease of firmness and soluble solids occured gradually during cold storage. Nevertheless seal-packaging with 0.02 mm LDPE film or wax-coating of citrus fruits were effective on weight loss and appearance, decay ratio increased for long-term storage. It was needed to control humidity in cold chamber for preventing from decay and weight loss. Edible part ratio was decreased gradually by respiration, and peel and tissue of fruits were softened slightly by 60 days of cold storage. Decay ratio and weight loss of full-ripened citrus fruits were little during the storage for 100 days, compared to the fruits harvested early. Appearance and taste of citrus fruits stored for 4 month were good relatively, but decay occured rapidly on seal-packaging fruits putting out of cold room for a few days. Because of the difficulty of long-term storage for early variety of Citrus unshiu, the conditions and periods of cold storage would be determined after considering the physicochemical properties of fruits.

  • PDF

Studies on the Packaging and Preservation of Kimchi (우리나라 김치의 포장과 저장방법에 관한 연구)

  • Lee, Yang-Hee;Yang, Ick-Whan
    • Applied Biological Chemistry
    • /
    • v.13 no.3
    • /
    • pp.207-218
    • /
    • 1970
  • Studies were carried out to develope the most economical and practical methods of packaging and preservation of kimchi, so commercialization of kimchi manufacture could proceed rapidly. The results obtained may be summarized as following. (1) It is generally established that the acceptable range of lactic acid content of kimchi is between 0.4% and 0.75%. Based on sensory evaluation, kimchi having lactic acid content below 0.4% and above 0.75% was not edible, and the time of optimum taste corresponded to the vicinity of 0.5% of lactic acid content. For the refrigeration storage with or without preservatives, the packaging kimchi in plastic film must be done at the lactic acid content of 0.45%, for lactic acid fermentation will continue slowly after the packaging. However, for the heat sterilized kimchi the packaging should be done at the 0.5% of lactic acid content for the best because lactic acid fermentation is completely stopped after the packaging. (2) Polyethylene, polypropylene, and polycello were chosen as suitable packaging materials. Polyethylene is cheapest among them but kimchi packaged in this film was damaged frequently in handling process and gave off kimchi flavor. On the other hand polypropylene also gave off kimchi flavor, but its higher mechanical strength gave better protection to kimchi and it had superior display effect due to the transparancy. Therefore polypropylene made much better packaging material. Polycello proved to be the best packaging material from the standpoint of physical characteristics but its price is higher than that of other plastic films. To be effective, the thickness of plastic films for packaging kimchi must exceed 0.08mm. (3) Keeping property of kimchi appeared to be excellent by means of freezing. However, by the time the frozen kimchi was thawed out at room temperature, moisture loss due to drip was extensive, rendering the kimchi too stringy. (4) Preservation of kimchi at refrigerated temperatures proved to be the best method and under the refrigerated condition the kimchi remained fresh as long as 3 months. The best results were obtained when kimchi was held at $0^{\circ}C$. (5) In general, preservatives alone were not too elective in preserving kimchi. Among them potassium sorbate appeared to be most effective with the four fold extension of self-life at $20^{\circ}C$ and two fold extension at $30^{\circ}C$. (6) In heat sterilization the thickness of packaged kimchi product had a geat effect upon the rate of heat penetration. When the thickness ranged from 1.5 to 1.8cm, the kimchi in such package could be sterilized at $65^{\circ}C$ for 20 minutes. Kimchi so heat treated could be kept at room temperature as long as one month without apparent changes in quality. (7) Among combination methods, preservation at refrigerated and heat sterilization could be favorably combined. When kimchi was stored at $4^{\circ}C$ after being sterilized at $65^{\circ}C$ for 20 minutes, it was possible to preserve the kimchi for more than 4 months.

  • PDF

Determination of the shelf life of cricket powder and effects of storage on its quality characteristics (식품원료용 귀뚜라미 분말의 저장 중 품질특성 및 유통기한 설정)

  • Kim, Dae-Hyun;Kim, Eun-Mi;Chang, Yoon-Je;Ahn, Mi-Young;Lee, Yong-Hwan;Park, Jin Ju;Lim, Jeong-Ho
    • Food Science and Preservation
    • /
    • v.23 no.2
    • /
    • pp.211-217
    • /
    • 2016
  • This study was carried out to determine the shelf-life of cricket powder and investigate the changes in its quality during storage. To determine the shelf-life, cricket powder was stored at temperatures of 25, 35, and $40^{\circ}C$ for 6 months. The changes in quality parameters of the cricket powder, such as moisture content, color, acid value, volatile base nitrogen (VBN), fatty acid, growth of microorganisms, and sensory appeal were investigated. The moisture content of the cricket powder increased during storage but did not show any significant difference at 6 months of storage. L value was increased at $25^{\circ}C$ storage but decreased at 35 and $40^{\circ}C$. However, there were no significant different in a and b values. The acid value decreased more rapidly at higher temperatures, while the VBN content was not changed. The major composition of fatty acids of cricket powder were palmitic acid, oleic acid, and linoleic acid. Their content was not changed at various the storage temperatures. No aerobic and coliform bacteria grew in the powder during the whole storage period. Cricket powder stored at $25^{\circ}C$ and $35^{\circ}C$ showed similar scores in sensory evaluation, but it storaged at $40^{\circ}C$ showed the significant difference (p<0.05). Moisture content, acid value, oleic acid, and flavor were selected as the criteria for shelf-life establishment of cricket powder. Based on these parameters, especially the moisture content, the shelf life of cricket powder was likely to be 18 months when stored at $25^{\circ}C$.